Skip to main content
Log in

High-resolution array comparative genomic hybridization analysis reveals unanticipated complexity of genetic deficiencies on chromosome V in Caenorhabditis elegans

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Genomic rearrangements are widely used in Caenorhabditis elegans research but many remain incompletely characterized at the physical level. We have used oligo-array comparative genomic analysis to assess the physical structure of 20 deficiencies and a single duplication of chromosome V. We find that while deletions internal to the chromosome appear simple in structure, terminal deletions are complex, containing duplications in addition to the deletion. Additionally, we confirm that transposon-induced deficiencies contain breakpoints that initiate at Tc1 elements. Finally, 13 of these deficiencies are known to suppress recombination far beyond the extent of the deletion. These deficiencies fall into two classes: strong and weak suppressors of adjacent recombination. Analysis of the deleted regions in these deficiencies reveals no common physical sites to explain the observed differences in recombination suppression. However, we find a strong correlation between the size of the rearranged chromosome and the severity of recombination suppression. Rearranged chromosomes that have a minor effect on recombination fall within 2% of normal chromosome size. Our observations highlight the use of array-based approaches for the analysis of rearranged genomes, revealing previously unidentified deficiency characteristics and addressing biologically relevant questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrett T, Edgar R (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352–369

    Article  PubMed  CAS  Google Scholar 

  • Bessereau JL (2006) Transposons in C. elegans. WormBook 1–13

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    PubMed  CAS  Google Scholar 

  • Clark DV, Rogalski TM, Donati LM, Baillie DL (1988) The unc-22(IV) region of Caenorhabditis elegans: genetic analysis of lethal mutations. Genetics 119(2):345–353

    PubMed  CAS  Google Scholar 

  • Clark DV, Johnsen RC, McKim KS, Baillie DL (1990) Analysis of lethal mutations induced in a mutator strain that activates transposable elements in Caenorhabditis elegans. Genome 33(1):109–114

    PubMed  CAS  Google Scholar 

  • Edgley ML, Baillie DL, Riddle DL, Rose AM (2006) Genetic balancers. WormBook 1–32. doi:10.1895/wormbook.1.89.1

  • Girard LR, Fiedler TJ, Harris TW, Carvalho F, Antoshechkin I, Han M, Sternberg PW, Stein LD, Chalfie M (2007) WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids Res 35(Database issue):D472–D475. doi:10.1093/nar/gkl894

    Article  PubMed  CAS  Google Scholar 

  • Gresham D, Dunham MJ, Botstein D (2008) Comparing whole genomes using DNA microarrays. Nat Rev Genet 9(4):291–302. doi:10.1038/nrg2335

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund M, Davis MW, Nguyen H, Dayton D, Jorgensen EM (2005) Heterozygous insertions alter crossover distribution but allow crossover interference in Caenorhabditis elegans. Genetics 171(3):1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Johnsen RC, Baillie DL (1988) Formaldehyde mutagenesis of the eT1 balanced region in Caenorhabditis elegans: dose-response curve and the analysis of mutational events. Mutat Res 201(1):137–147

    PubMed  CAS  Google Scholar 

  • Johnsen RC, Baillie DL (1991) Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. Genetics 129(3):735–752

    PubMed  CAS  Google Scholar 

  • Jones MR, Maydan JS, Flibotte S, Moerman DG, Baillie DL (2007) Oligonucleotide array comparative genomic hybridization (oaCGH) based characterization of genetic deficiencies as an aid to gene mapping in Caenorhabditis elegans. BMC Genomics 8(1):402

    Article  PubMed  Google Scholar 

  • Kadandale P, Geldziler B, Hoffmann M, Singson A (2005) Use of SNPs to determine the breakpoints of complex deficiencies, facilitating gene mapping in Caenorhabditis elegans. BMC Genet 6(1):28

    Article  PubMed  CAS  Google Scholar 

  • Maydan JS, Flibotte S, Edgley ML, Lau J, Selzer RR, Richmond TA, Pofahl NJ, Thomas JH, Moerman DG (2007) Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res 17(3):337–347

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25(8):405–416

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The Stability of broken ends of chromosomes in Zea mays. Genetics 26(2):234–282

    PubMed  CAS  Google Scholar 

  • McKim KS, Howell AM, Rose AM (1988) The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics 120(4):987–1001

    PubMed  CAS  Google Scholar 

  • McKim KS, Peters K, Rose AM (1993) Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics 134(3):749–768

    PubMed  CAS  Google Scholar 

  • Mori I, Moerman DG, Waterston RH (1988) Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics 120(2):397–407

    PubMed  CAS  Google Scholar 

  • Muller HJ (1938) The remaking of chromosomes. Collect Net 8:182–195

    Google Scholar 

  • Muller HJ, Herskowitz IH (1954) Concerning the healing of chromosome ends produced by breakage in Drosophila melanogaster. Am Nat 88:177–208

    Article  Google Scholar 

  • Rogalski TM, Moerman DG, Baillie DL (1982) Essential genes and deficiencies in the unc-22 IV region of Caenorhabditis elegans. Genetics 102(4):725–736

    PubMed  CAS  Google Scholar 

  • Rose AM, Baillie DL, Curran J (1984) Meiotic pairing behavior of two free duplications of linkage group I in Caenorhabditis elegans. Mol Gen Genet 195(1–2):52–56

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth RE, Baillie DL (1981) The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics 99(3–4):415–428

    PubMed  CAS  Google Scholar 

  • Rosenbluth RE, Cuddeford C, Baillie DL (1985) Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation. Genetics 109(3):493–511

    PubMed  CAS  Google Scholar 

  • Rosenbluth RE, Rogalski TM, Johnsen RC, Addison LM, Baillie DL (1988) Genomic organization in Caenorhabditis elegans: deficiency mapping on linkage group V(left). Genet Res 52:105–118

    Article  Google Scholar 

  • Rosenbluth RE, Johnsen RC, Baillie DL (1990) Pairing for recombination in LGV of Caenorhabditis elegans: a model based on recombination in deficiency heterozygotes. Genetics 124(3):615–625

    PubMed  CAS  Google Scholar 

  • Stewart HI, O’Neil NJ, Janke DL, Franz NW, Chamberlin HM, Howell AM, Gilchrist EJ, Ha TT, Kuervers LM, Vatcher GP, Danielson JL, Baillie DL (1998) Lethal mutations defining 112 complementation groups in a 4.5 Mb sequenced region of Caenorhabditis elegans chromosome III. Mol Gen Genet 260(2–3):280–288

    PubMed  CAS  Google Scholar 

  • Wicky C, Villeneuve AM, Lauper N, Codourey L, Tobler H, Muller F (1996) Telomeric repeats (TTAGGC) n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93(17):8983–8988

    Article  PubMed  CAS  Google Scholar 

  • Zetka MC, Rose AM (1992) The meiotic behavior of an inversion in Caenorhabditis elegans. Genetics 131(2):321–332

    PubMed  CAS  Google Scholar 

  • Zhao Y, Lai K, Cheung I, Youds J, Tarailo M, Tarailo S, Rose A (2006) A mutational analysis of Caenorhabditis elegans in space. Mutat Res 601(1–2):19–29

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Canadian Space Agency and Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Jones.

Additional information

Communicated by S. Hekimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.R., Chua, S.Y., O’Neil, N.J. et al. High-resolution array comparative genomic hybridization analysis reveals unanticipated complexity of genetic deficiencies on chromosome V in Caenorhabditis elegans . Mol Genet Genomics 282, 37–46 (2009). https://doi.org/10.1007/s00438-009-0444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0444-8

Keywords

Navigation