Skip to main content
Log in

Patterns of tandem repetition in plant whole genome assemblies

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9–30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445

    CAS  Google Scholar 

  • Arabidopsis thaliana Genome Initiative (2001) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

  • Aragón-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    Article  PubMed  Google Scholar 

  • Batistoni R, Pesole G, Marracci S, Nardi I (1995) A tandemly repeated DNA family originated from SINE-related elements in the European plethodontid salamanders (Amphibia, Urodela). J Mol Evol 40:608–615

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 2:573–580

    Article  Google Scholar 

  • Bergman CM, Quesneville H (2007) Discovering and detecting transposable elements in genome sequences. Brief Bioinform 8:382–392

    Article  PubMed  CAS  Google Scholar 

  • Blakesley RW, Hansen NF, Mullikin JC, Thomas PJ, McDowell JC, Maskeri B, Young AC, Benjamin B, Brooks SY, Coleman BI, Gupta J, Ho SL, Karlins EM, Maduro QL, Stantripop S, Tsurgeon C, Vogt JL, Walker MA, Masiello CA, Guan X, NISC Comparative Sequencing Program, Bouffard GG, Green ED (2004) An intermediate grade of finished genomic sequence suitable for comparative analyses. Genome Res 14:2235–2244

    Article  PubMed  CAS  Google Scholar 

  • Camacho JP, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci 355:163–178

    Article  PubMed  CAS  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854

    PubMed  CAS  Google Scholar 

  • de la Herrán R, Cuñado N, Navajas-Pérez N, Santos JL, Ruiz Rejón C, Garrido-Ramos MA, Ruiz Rejón M (2005) The controversial telomeres of lily plants. Cytogenet Genome Res 109:144–147

    Article  CAS  Google Scholar 

  • Delseny M (2003) Towards an accurate sequence of the rice genome. Curr Opin Plant Biol 6:101–105

    Article  PubMed  CAS  Google Scholar 

  • Depeiges A, Goubely C, Lenoir A, Cocherel S, Picard G, Raynal M, Grellet F, Delseny M (1995) Identification of the most represented repeated motifs in Arabidopsis thaliana microsatellite loci. Theor Appl Genetics 91:160–168

    Article  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140

    Article  PubMed  CAS  Google Scholar 

  • Elder JR, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    Article  PubMed  CAS  Google Scholar 

  • Fann J-Y, Kovarik A, Hemleben V, Tsirekidze NI, Beridze TG (2001) Molecular and structural evolution of Citrus satellite DNA. Theor Appl Genet 103:1068–1073

    Article  CAS  Google Scholar 

  • Fitzgerald DJ, Dryden GL, Bronson EC, Williams JS, Anderson JN (1994) Conserved patterns of bending in satellite and nucleosome positioning DNA. J Biol Chem 269:21303–21314

    PubMed  CAS  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and proportion of repeated nucleotide-sequence DNA in plants. Biochem Genet 12:257–269

    Article  PubMed  CAS  Google Scholar 

  • Hagemann S, Scheer B, Schweizer D (1993) Repetitive sequences in the genome of Anemone blanda: identification of tandem arrays and of dispersed repeats. Chromosoma 102:312–324

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol 27:853–862

    Article  PubMed  CAS  Google Scholar 

  • Kapila R, Das S, Srivastava PS, Lakshmikumaran M (1996) A novel species-specific tandem repeat DNA family from Sinapis arvensis: detection of telomere-like sequences. Genome 39:758–766

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Holmquist GP, Jurka J (1998) L1 repeat is a basic unit of heterochromatin satellites in cetaceans. Mol Biol Evol 15:611–612

    PubMed  CAS  Google Scholar 

  • Kipling D (1995) The telomere. Oxford University Press, Oxford

    Google Scholar 

  • Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosom Res 11:183–194

    Article  CAS  Google Scholar 

  • Kubis SE, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Botany 82:45–55

    Article  CAS  Google Scholar 

  • La Rota M, Kantety RV, Yu JK, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6:23

    Article  PubMed  CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  PubMed  CAS  Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19:436–444

    PubMed  CAS  Google Scholar 

  • López-Flores I, de la Herrán R, Garrido-Ramos MA, Boudry P, Ruiz-Rejón C, Ruiz-Rejón M (2004) The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339:181–188

    Article  PubMed  CAS  Google Scholar 

  • Loridon K, Cournoyer B, Goubely C, Depeiges A, Picard G (1998) Length polymorphism and allele structure of trinucleotide microsatellites in natural accessions of Arabidopsis thaliana. Theor Appl Genet 97:591–604

    Article  CAS  Google Scholar 

  • Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Mestrović N, Plohl M, Mravinac B, Ugarković D (1998) Evolution of satellite DNAs from the genus Palorus—experimental evidence for the “library” hypothesis. Mol Biol Evol 15:1062–1068

    PubMed  Google Scholar 

  • Métais I, Aubry C, Hamon B, Peltier D, Jalouzot R (1998) Cloning, quantification and characterization of a minisatellite DNA sequence from common bean Phaseolus vulgaris L. TAG 97:232–237

    Article  Google Scholar 

  • Miklos GL (1985) Localited highly repetitive DNA sequences in vertebrate and invertebrate genomes. In: McIntryre JR (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 231–241

    Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere specific DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839

    Article  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, de Pamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Mun JH, Kim DJ, Choi HK, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Peters DL, Thompson WF (1981) Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J Mol Evol 17:31–42

    Article  CAS  Google Scholar 

  • Nagaki K, Tsujimoto H, Sasakuma T (1998) A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosom Res 6:295–302

    Article  CAS  Google Scholar 

  • Nagarajan N, Navajas-Pérez R, Pop M, Alam M, Ming R, Paterson AH, Salzberg SL (2008) Genome-wide analysis of repetitive elements in papaya. Tropical Plant Biol 3–4:191–201

    Article  CAS  Google Scholar 

  • Navajas-Pérez R, Schwarzacher T, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2006) The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368:61–71

    Article  PubMed  CAS  Google Scholar 

  • Nunome T, Suwabe K, Ohyama A, Fukuoka H (2003) Characterization of trinucleotide microsatellites in eggplant. Breed Sci 53:77–83

    Article  CAS  Google Scholar 

  • Okagaki RJ, Phillips RL (2004) Maize DNA-sequencing strategies and genome organization. Genome Biol 5:223

    Article  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Lyons E, Maher C, Narechania A, Penning B, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein PE, Kresovich S, McCann MC, Ming R, Peterson DG, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Wessler SR, Paterson AH (2002) Efficient capture of unique sequences from eukaryotic genomes. Trends Genet 18:547–550

    Article  PubMed  CAS  Google Scholar 

  • Petracek ME, Lefebvre PA, Silflow CD, Berman J (1990) Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. Proc Natl Acad Sci USA 87:8222–8226

    Article  PubMed  CAS  Google Scholar 

  • Plohl M, Mestrović N, Bruvo B, Ugarković D (1998) Similarity of structural features and evolution of satellite DNAs from Palorus subdepressus (Coleoptera) and related species. J Mol Evol 46:234–239

    Article  PubMed  CAS  Google Scholar 

  • Poole RL (2007) The TAIR database. Methods Mol Biol 406:179–212

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal J, Das S, Khurana DK, Srivastava PS, Lakshmikumaran M (1999) Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus. Genome 42:909–918

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2(9):e115

    Article  PubMed  CAS  Google Scholar 

  • Saini N, Shultz J, Lightfoot DA (2008) Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly. BMC Genomics 9:323

    Article  PubMed  CAS  Google Scholar 

  • Simoens CR, Gielen J, Van Montagu M, Inzé D (1988) Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acids Res 16:6753–6766

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272

    Article  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  • Stephan W (1989) Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol 6:198–212

    PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Tutois S, Cloix C, Cuvillier C, Espagnol MC, Lafleuriel J, Picard G, Tourmente S (1999) Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana. Chromosome Res 7:143–156

    Article  PubMed  CAS  Google Scholar 

  • Ugarković D, Plohl M (2002) Variation in satellite DNA profiles, causes and effects. EMBO J 21:5955–5959

    Article  PubMed  Google Scholar 

  • von Stackelberg M, Rensing SA, Reski R (2006) Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites. BMC Plant Biol 6:9

    Article  CAS  Google Scholar 

  • Wang J, Chen C, Na J-K, Yu Q, Hou S, Paull RE, Moore PH, Alam M, Ming R (2008) Genome-wide comparative analyses of microsatellites in papaya. Tropical Plant Biol 3–4:278–292

    Article  CAS  Google Scholar 

  • Wu TY, Wu R (1987) A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA. Nucleic Acids Res 15:5913–5923

    Article  PubMed  CAS  Google Scholar 

  • Wu HK, Chung MC, Wu TY, Ning CN, Wu R (1991) Localization of specific repetitive DNA sequences in individual rice chromosomes. Chromosoma 100:330–338

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Jiang J (2007) Rice as a model for centromere and heterochromatin research. Chromosom Res 15:77–84

    Article  CAS  Google Scholar 

  • Zhao X, Ding X, Ji Y, Stelly D, Paterson AH (1998) Macromolecular organization and genetic mapping of a recently-amplified tandem repeat family (B77) in cotton. Plant Mol Biol 38:1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Zhang HB, Hodnett GL, Gomez MI, Kim JS, Price HJ, Stelly DM (2000) Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot 12:1757–1764

    Article  Google Scholar 

Download references

Acknowledgments

R. N.-P. is a Fulbright postdoctoral scholar (FU-2006-0675) supported by Spanish MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Navajas-Pérez.

Additional information

Communicated by Y. Van de Peer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navajas-Pérez, R., Paterson, A.H. Patterns of tandem repetition in plant whole genome assemblies. Mol Genet Genomics 281, 579–590 (2009). https://doi.org/10.1007/s00438-009-0433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0433-y

Keywords

Navigation