Skip to main content
Log in

Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizossacharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2∆ rad9∆, srs2∆ chk1∆ cds1∆ or srs2∆ mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2∆ rad3 ts cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (~100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2∆ rad9∆, srs2∆ chk1∆ cds1∆ or srs2∆ mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2∆ cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboussekhra A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol Cell Biol 12:3224–3234

    PubMed  CAS  Google Scholar 

  • Adachi Y, Kokubu A, Ebe M, Nagao K, Yanagida M (2008) Cut1/separase-dependent roles of multiple phosphorylation of fission yeast cohesion subunit Rad21 in post-replicative damage repair and mitosis. Cell Cycle 7:765–776

    PubMed  CAS  Google Scholar 

  • Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790

    PubMed  CAS  Google Scholar 

  • Allers T, Lichten M (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57

    Article  PubMed  CAS  Google Scholar 

  • Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  PubMed  Google Scholar 

  • Barbet NC, Carr AM (1993) Fission yeast wee1 protein kinase is not required for DNA damage-dependent mitotic arrest. Nature 364:824–827

    Article  PubMed  CAS  Google Scholar 

  • Bärtsch S, Kang LE, Symington LS (2000) RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol Cell Biol 20:1194–1205

    Article  PubMed  Google Scholar 

  • Coulon S, Gaillard PL, Chahwan C, McDonald WH, Yates JR, Russell P (2004) Slx1–Slx4 are subunits of a structure-specific endonuclease that maintains ribosomal DNA in fission yeast. Mol Biol Cell 15:71–80

    Article  PubMed  CAS  Google Scholar 

  • Forsburg SL (1993) Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res 21:2955–2956

    Article  PubMed  CAS  Google Scholar 

  • Frampton J, Irmisch A, Green CM, Neiss A, Trickey M, Ulrich HD, Furuya K, Watts FZ, Carr AM, Lehmann AR (2006) Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17:2976–2985

    Article  PubMed  CAS  Google Scholar 

  • Gangloff S, Soustelle C, Fabre F (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25:192–194

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730

    Article  PubMed  CAS  Google Scholar 

  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    Article  PubMed  CAS  Google Scholar 

  • Ivessa AS, Zhou JQ, Zakian VA (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489

    Article  PubMed  CAS  Google Scholar 

  • Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA (2002) Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16:1383–1396

    Article  PubMed  CAS  Google Scholar 

  • Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication fork progression past non-histone protein–DNA complexes. Mol Cell 12:1525–1536

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Wang TSF (2003) Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis. Mutat Res 532:59–73

    PubMed  CAS  Google Scholar 

  • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication–pausing complex. Nature 424:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Kearsey SE, Stevenson AL, Toda T, Wang SW (2007) Fission yeast Cut8 is required for the repair of DNA double-strand breaks, ribosomal DNA maintenance, and cell survival in the absence of Rqh1 helicase. Mol Cell Biol 27:1558–1567

    Article  PubMed  CAS  Google Scholar 

  • Keil RL, McWilliams AD (1993) A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135:711–718

    PubMed  CAS  Google Scholar 

  • Kelly TJ, Martin GS, Forsburg SL, Stephen RJ, Russo A, Nurse P (1993) The fission yeast cdc18 + gene product couples S phase to START and mitosis. Cell 74:371–382

    Article  PubMed  CAS  Google Scholar 

  • Kiely J, Haase SB, Russell P, Leatherwood J (2000) Functions of fission yeast Orp2 in DNA replication and checkpoint control. Genetics 154:599–607

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830

    Article  PubMed  CAS  Google Scholar 

  • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Birren B, Lai E (1991) Ultraviolet nicking of large DNA molecules from pulsed-field gels for Southern transfer and hybridization. Anal Biochem 199:29–34

    Article  PubMed  CAS  Google Scholar 

  • Liberi G, Chiolo I, Pellicioli A, Lopes M, Plevani P, Muzi-Falconi M, Foiani M (2000) Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J 19:5027–5038

    Article  PubMed  CAS  Google Scholar 

  • Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 98:8276–8282

    Article  PubMed  CAS  Google Scholar 

  • Martinho RG, Lindsay HD, Flaggs G, DeMaggio AJ, Hoekstra MF, Carr AM, Bentley NJ (1998) Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J 17:7239–7249

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  PubMed  CAS  Google Scholar 

  • Morishita T, Furukawa F, Sakaguchi C, Toda T, Carr AM, Iwasaki H, Shinagawa H (2005) Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates. Mol Cell Biol 25:8074–8083

    Article  PubMed  CAS  Google Scholar 

  • Murray JM, Lindsay HD, Munday CA, Carr AM (1997) Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol 17:6868–6875

    PubMed  CAS  Google Scholar 

  • Nagao K, Adachi Y, Yanagida M (2004) Separase-mediated cleavage of cohesin at interphase is required for DNA repair. Nature 430:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Nassif N, Penney J, Pal S, Engels WR, Gloor GB (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14:1613–1625

    PubMed  CAS  Google Scholar 

  • Nedelcheva MN, Roguev A, Dolapchiev LB, Shevchenko A, Taskov HB, Shevchenko A, Stewart AF, Stoynov SS (2005) Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol 347:509–521

    Article  PubMed  CAS  Google Scholar 

  • Osborn AJ, Elledge SJ (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Osman F, Dixon J, Barr AR, Whitby MC (2005) The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol Cell Biol 25:8084–8096

    Article  PubMed  CAS  Google Scholar 

  • Ostermann K, Lorentz A, Schmidt H (1993) The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucleic Acids Res 21:5940–5944

    Article  PubMed  CAS  Google Scholar 

  • Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and Ubiquitin on PCNA Is Mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133

    Article  PubMed  CAS  Google Scholar 

  • Pasero P, Marilley M (1993) Size variation of rDNA clusters in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mol Gen Genet 236:448–452

    Article  PubMed  CAS  Google Scholar 

  • Robert T, Dervins D, Fabre F, Gangloff S (2006) Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J 25:2837–2846

    Article  PubMed  CAS  Google Scholar 

  • Rong L, Klein HL (1993) Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem 268:1252–1259

    PubMed  CAS  Google Scholar 

  • Rong L, Palladino F, Aguilera A, Klein HL (1991) The hyper-gene conversion hpr5–1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127:75–85

    PubMed  CAS  Google Scholar 

  • Schild D (1995) Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127

    PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Russell P (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3:966–972

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Ryu GH, Seo YS, Tanaka K, Okayama H, MacNeill SA, Yuasa Y (2002) The fission yeast pfh1(+) gene encodes an essential 5′ to 3′ DNA helicase required for the completion of S-phase. Nucleic Acids Res 30:4728–4739

    Article  PubMed  CAS  Google Scholar 

  • Torres JZ, Schnakenberg SL, Zakian VA (2004) The Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: Viability of rrm3 cells requires the intra S phase checkpoint and fork restart activities. Mol Cell Biol 24:3198–3212

    Article  PubMed  CAS  Google Scholar 

  • Uzawa S, Yanagida M (1992) Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J Cell Sci 101:267–275

    PubMed  Google Scholar 

  • Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10:373–385

    Article  PubMed  CAS  Google Scholar 

  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Walworth NC, Bernards R (1996) Rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271:353–356

    Article  PubMed  CAS  Google Scholar 

  • Wang SW, Goodwin A, Hickson ID, Norbury CJ (2001) Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage. Nucleic Acids Res 29:2963–2972

    Article  PubMed  CAS  Google Scholar 

  • Win TZ, Goodwin A, Hickson ID, Norbury CJ, Wang SW (2004) Requirement for Schizosaccharomyces pombe Top3 in the maintenance of chromosome integrity. J Cell Sci 117:4769–4778

    Article  PubMed  CAS  Google Scholar 

  • Win TZ, Mankouri HW, Hickson ID, Wang SW (2005) A role for the fission yeast Rqh1 helicase in chromosome segregation. J Cell Sci 118:5777–5784

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Boone C, Klein HL (2004) Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 24:7082–7090

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Davenport M, Kelly TJ (2006) Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. Genes Dev 20:990–1003

    Article  PubMed  CAS  Google Scholar 

  • Zhou JQ, Qi H, Schulz VP, Mateyak MK, Monson EK, Zakian VA (2002) Schizosaccharomyces pombe pfh1 + encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 subfamily of DNA helicases. Mol Biol Cell 13:2180–2191

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. M. Carr, T. Kelly, A. Matsuura, N. Rhind, P. Russell, K. Tanaka, and M. Yanagida for providing strains and plasmids, and H. Iwasaki for assistance in sequencing. This research was partly supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, No. 12780510, 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Yasuhira.

Additional information

Communicated by A. Aguilera.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuhira, S. Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe . Mol Genet Genomics 281, 497–509 (2009). https://doi.org/10.1007/s00438-009-0426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0426-x

Keywords

Navigation