Advertisement

Molecular Genetics and Genomics

, Volume 280, Issue 4, pp 293–304 | Cite as

Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa

  • Melanie L. Hand
  • Rebecca C. Ponting
  • Michelle C. Drayton
  • Kahlil A. Lawless
  • Noel O. I. Cogan
  • E. Charles Brummer
  • Timothy I. Sawbridge
  • German C. Spangenberg
  • Kevin F. Smith
  • John W. Forster
Original Paper

Abstract

The combination of homologous, homoeologous and paralogous classes of sequence variation presents major challenges for SNP discovery in outbreeding allopolyploid species. Previous in vitro gene-associated SNP discovery studies in the allotetraploid forage legume white clover (Trifolium repens L.) were vulnerable to such effects, leading to prohibitive levels of attrition during SNP validation. Identification of T. occidentale and T. pallescens as the putative diploid progenitors of white clover has permitted discrimination of the different sequence variant categories. Amplicons from selected abiotic stress tolerance-related genes were obtained using mapping family parents and individuals from each diploid species. Following cloning, progenitor comparison allowed tentative assignment of individual haplotypes to one or other sub-genome, as well as to gene copies within sub-genomes. A high degree of coincidence and identity between SNPs and HSVs was observed. Close similarity was observed between the genome of T. occidentale and one white clover sub-genome, but the affinity between T. pallescens and the other sub-genome was weaker, suggesting that a currently uncharacterised taxon may be the true second progenitor. Selected validated SNPs were attributed to individual sub-genomes by assignment to and naming of homoeologous linkage groups, providing the basis for improved genetic trait-dissection studies. The approach described in this study is broadly applicable to a range of allopolyploid taxa of equivocal ancestry.

Keywords

Forage legume White clover Single nucleotide polymorphism Haplotype Candidate gene Functional variation 

Notes

Acknowledgments

This work was supported by funding from the Victorian Department of Primary Industries, Dairy Australia Ltd., the Geoffrey Gardiner Dairy Foundation, Meat and Livestock Australia Ltd. and the Molecular Plant Breeding Cooperative Research Centre (MPB CRC). The authors thank Dr. Nick Ellison (AgResearch New Zealand) for provision of T. pallescens genomic DNA and both Dr. Ross Chapman and Prof. Michael Hayward for careful critical reading of the manuscript.

Supplementary material

438_2008_365_MOESM1_ESM.doc (90 kb)
MOESM1 Summary information for GenBank submissions of sub-genome specific DNA sequences derived from template genes in this study. Definitions, accession numbers, lengths, nucleotide content, feature descriptions and text versions of sequences are provided. Consensus sequences for multiple haplotypes are provided, with sub-genome specific SNPs coded as redundant bases (M = A or C; R = A or G; W = A or T; S = C or G; Y = C or T; K = G or T; V = A, C or G; H = A, C or T; D = A, G or T; b = C, G or T; N = A, T, C or G) (DOC 89 kb)
438_2008_365_MOESM2_ESM.ppt (40 kb)
MOESM2 Distribution of SNP loci within the structure of the TrDHNb dehydrin gene. The two exons and a single intron are indicated as black and grey boxes, respectively. Positions of LAPs used to generate genomic amplicons are indicated, while arrows denote SNPs in the exons (12) and intron (7) (PPT 39 kb)
438_2008_365_MOESM3_ESM.doc (126 kb)
MOESM3 Full information for levels of nucleotide identity between T. occidentale and T. pallescens reference sequences and O and P' sub-genome sequences. Average values for the consensus sequences of each white clover mapping family parental genotype are presented for each gene (DOC 125 kb)

References

  1. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Nat Acad Sci USA 100:4649–4654PubMedCrossRefGoogle Scholar
  2. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  3. Badr A, Sayed-Ahmed H, El-Shanshouri A, Watson LE (2002) Ancestors of white clover (Trifolium repens L.), as revealed by isozyme polymorphisms. Theor Appl Genet 106:143–148PubMedGoogle Scholar
  4. Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover (Trifolium repens L.). Theor Appl Genet 109:596–608PubMedGoogle Scholar
  5. Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198CrossRefGoogle Scholar
  6. Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo M-C, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947PubMedCrossRefGoogle Scholar
  7. Chen CC, Gibson PB (1970) Chromosome pairing in two interspecific hybrids of Trifolium. Can J Genet Cytol 12:790–794Google Scholar
  8. Chen CC, Gibson PB (1971) Karyotypes of fifteen Trifolium species in section Amoria. Crop Sci 11:441–445Google Scholar
  9. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305PubMedCrossRefGoogle Scholar
  10. Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2006) Gene-associated single nucleotide polymorphism (SNP) discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genom 276:101–112CrossRefGoogle Scholar
  11. Cogan NOI, Drayton MC, Ponting RC, Vecchies AC, Bannan NR, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2007) Validation of in silico-predicted genic single nucleotide polymorphism in white clover (Trifolium repens L.). Mol Genet Genom 277:413–425CrossRefGoogle Scholar
  12. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780PubMedCrossRefGoogle Scholar
  13. Cronn RC, Wendel JF (1998) Simple methods for isolating homoeologous loci from allopolyploid genomes. Genome 41:756–762CrossRefGoogle Scholar
  14. Dobrowolski MP, Forster JW (2007) Chapter 9: Linkage disequilibrium-based association mapping in forage species. In: Oraguzie NC, Rikkerink E, Gardiner SE, De Silva NH (eds) Association mapping in plants. Springer, New York, pp 197–209CrossRefGoogle Scholar
  15. Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:203–219PubMedCrossRefGoogle Scholar
  16. Edwards D, Forster JW, Cogan NOI, Batley J, Chagné D (2007) Chapter 4: Single nucleotide polymorphism discovery in plants. In: Oraguzie NC, Rikkerink E, Gardiner SE, De Silva NH (eds) Association mapping in plants. Springer, New York, pp 53–76CrossRefGoogle Scholar
  17. Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol Phylogenet Evol 39:688–705PubMedCrossRefGoogle Scholar
  18. Erwin TA, Jewell EG, Love CG, Lim GAC, Li X, Chapman R, Batley J, Stajich JE, Mongin E, Stupka ER, Spangenberg G, Edwards D (2007) BASC: an integrated bioinformatics system for Brassica research. Nucl Acids Res 35:870–873CrossRefGoogle Scholar
  19. Faville M, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally-associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32PubMedCrossRefGoogle Scholar
  20. Forster JW, Jones ES, Batley J, Smith KF (2004) Molecular marker-based genetic analysis of pasture and turf grasses. In: Hopkins A, Wang Z-Y, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer Academic Press, Dordrecht, pp 197–239CrossRefGoogle Scholar
  21. Forster JW, Cogan NOI, Dobrowolski MP, Francki MG, Spangenberg GC, Smith KF (2008) Functionally-associated molecular genetic markers for temperate pasture plant improvement. In: Henry RJ (ed) Plant genotyping II: SNP technology. CABI Press, Wallingford, pp 154–187Google Scholar
  22. Fredman D, White SJ, Potter S, Eichler EE, Den Dunnen JT, Brookes AJ (2004) Complex SNP-related sequence variation in segmental genome duplications. Nat Genet 36:861–866PubMedCrossRefGoogle Scholar
  23. Frugier F, Poirier S, Satiat-Jeunemaître B, Kondorosi A, Crespi M (2000) A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Dev 14:475–482PubMedGoogle Scholar
  24. George J, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2006a) Genetic map integration and comparative genome organisation of white clover (Trifolium repens L.) with model legume species. Plant and Animal Genome XIV, San Diego, pp 542Google Scholar
  25. George J, Dobrowolski MP, de Jong E, Cogan NOI, Smith KF, Forster JW (2006b) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by simple sequence repeat polymorphism. Genome 49:919–930PubMedCrossRefGoogle Scholar
  26. Griffiths A, Barrett B, Simon D, Anderson C, Somerville D, Lawn J, Warren J, Khan A, Jones C (2007) A consensus map of white clover with in silico alignment to Medicago indicates a translocation. Proc Fifth Intl Symp Molecular Breeding of Forage and Turf, Sapporo July 2007, pp 115Google Scholar
  27. Huang B, Liu JY (2006) A cotton dehydration-responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem Biophys Res Commun 343:1023–1031PubMedCrossRefGoogle Scholar
  28. Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquiére M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridisation. Heredity 75:171–174CrossRefGoogle Scholar
  29. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450PubMedCrossRefGoogle Scholar
  30. Jones ES, Hughes LJ, Drayton MC, Abberton MT, Michaelson-Yeates TPT, Forster JW (2003) An SSR and AFLP molecular marker-based genetic map of white clover (Trifolium repens L.). Plant Sci 165:531–539CrossRefGoogle Scholar
  31. Kölliker R, Jones ES, Drayton MC, Dupal MP, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424CrossRefGoogle Scholar
  32. Lawless KA, Drayton MC, Hand MC, Ponting RC, Cogan NOI, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW. (2008) Interpretation of SNP haplotype complexity in white clover (Trifolium repens L.), an outbreeding allotetraploid species, Chap 19. In: Yamada T, Spangenberg G (eds) Molecular Breeding of Forage and Turf: The Proceedings of the 5th International Symposium on the Molecular Breeding of Forage and Turf. Springer, New York (in press)Google Scholar
  33. Lu CM, Yang WY, Zhang WJ, Lu B-R (2005) Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunit Dtx1.5 from Aegilops tauschii through sequence characterisation. J Cereal Sci 41:13–18CrossRefGoogle Scholar
  34. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  35. Merchan F, Breda C, Perez Hormaeche J, Sousa C, Kondorosi A, Aguilar OM, Megias M, Crespi M (2003) A Krüppel-lke transcription factor gene is involved in salt stress responses in Medicago spp. Plant and Soil 257:1–9CrossRefGoogle Scholar
  36. Michaelson-Yeates TPT, Marshall A, Abberton MT, Rhodes I (1997) Self-incompatibility and heterosis in white clover (Trifolium repens L.). Euphytica 94:341–348CrossRefGoogle Scholar
  37. Mondragon-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 22:2444–2456PubMedCrossRefGoogle Scholar
  38. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Op Plant Biol 8:122–128CrossRefGoogle Scholar
  39. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665PubMedCrossRefGoogle Scholar
  40. Ogihara Y, Hasegawa K, Tsuijimoto H (1994) High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (Gc) genes of Aegilops speltoides. Mol Genet Genom 244:253–259Google Scholar
  41. Olsen KM, Sutherland BL, Small LL (2007) Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol Ecol 16:4180–4193PubMedCrossRefGoogle Scholar
  42. Ponting RC, Drayton MD, Cogan NOI, Dobrowolski MP, Smith KF, Spangenberg GC, Forster JW (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Genet Genom 278:589–597Google Scholar
  43. Rickert A, Premstaller A, Gebhardt C, Oefner PJ (2002) Genotyping of SNPs in a polyploidy genome by pyrosequencing. BioTechniques 32:592–603PubMedGoogle Scholar
  44. Robertson M, Chandler PM (1994) A dehydrin-cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol Biol 26:805–816PubMedCrossRefGoogle Scholar
  45. Romo S, Labrador E, Dopico B (2001) Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39:1017–1026CrossRefGoogle Scholar
  46. Ross P, Hall L, Haff LA (2000) Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. BioTechniques 29: 620–6, 628–629Google Scholar
  47. Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398PubMedCrossRefGoogle Scholar
  48. Sawbridge T, Ong E-K, Binnion C, Emmerling M, Meath K, Nunan K, O’Neill M, O’Toole F, Simmonds J, Wearne K, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in white clover (Trifolium repens L.). Plant Sci 165:1077–1087CrossRefGoogle Scholar
  49. Senanayake YDA, Bringhurst RS (1967) Origin of Fragaria polyploids. I. Cytological analysis. Am J Bot 54:221–228CrossRefGoogle Scholar
  50. Simko I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends Plant Sci 9:441–448PubMedCrossRefGoogle Scholar
  51. Small RL, Wendel JF (2000) Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155:1913–1926PubMedGoogle Scholar
  52. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437CrossRefGoogle Scholar
  53. Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Sci 37:691–697Google Scholar
  54. Spangenberg GC, Forster JW, Edwards D, John U, Mouradov A, Emmerling M, Batley J, Felitti S, Cogan NOI, Smith KF, Dobrowolski MP (2005) Future directions in the molecular breeding of forage and turf. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Netherlands, pp 83–97Google Scholar
  55. Tombolato DCM, Zhang K, Davis TM, Folta Km (2008) Implementation of gene pair haplotypes provides evidence of the subgenome composition of cultivated strawberry (Fragaria × ananassa). Plant and Animal Genome XVI, San Diego, January 2008, pp 666Google Scholar
  56. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420CrossRefGoogle Scholar
  57. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249PubMedCrossRefGoogle Scholar
  58. Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chembiochem 4:1120–1128PubMedCrossRefGoogle Scholar
  59. Zhang Y, Sledge MK, Bouton JH (2007) Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet 114:1367–1378PubMedCrossRefGoogle Scholar
  60. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Melanie L. Hand
    • 1
    • 4
  • Rebecca C. Ponting
    • 1
    • 4
  • Michelle C. Drayton
    • 1
    • 4
  • Kahlil A. Lawless
    • 1
    • 4
  • Noel O. I. Cogan
    • 1
    • 4
  • E. Charles Brummer
    • 2
  • Timothy I. Sawbridge
    • 1
    • 4
  • German C. Spangenberg
    • 1
    • 4
  • Kevin F. Smith
    • 3
    • 4
  • John W. Forster
    • 1
    • 4
  1. 1.Department of Primary Industries, Biosciences Research DivisionVictorian AgriBiosciences CentreBundooraAustralia
  2. 2.Centre for Applied Genetic Technologies, Crop and Soil Science DepartmentUniversity of GeorgiaAthensUSA
  3. 3.Department of Primary Industries, Biosciences Research DivisionHamilton CentreHamiltonAustralia
  4. 4.Molecular Plant Breeding Cooperative Research CentreVictorian AgriBiosciences CentreBundooraAustralia

Personalised recommendations