Skip to main content
Log in

Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The MADS-box family of genes encodes transcription factors that have widely ranging roles in diverse aspects of plant development. In this study, four cotton MADS-box cDNA clones of the type II (MIKC) class were isolated, with phylogenetic analysis indicating that the cotton sequences are of the AGAMOUS subclass. The corresponding transcripts were detected in developing cotton fibre cells as well as in whole ovule and flower tissue, with differential expression in stems, leaves and roots. Reverse transcription PCR showed extensive alternative splicing in one of the reactions, and 11 mRNAs of different intron/exon composition and length were characterised. Sequence differences between the transcripts indicated that they could not be derived from the same pre-mRNA and that the sequenced transcript pool was derived from two distinct MADS-box genes. Several of the alternatively spliced transcripts potentially encoded proteins with altered K-domains and/or C-terminal regions and the variant proteins may have altered cellular roles. This work is the first that describes MADS-box gene expression in elongating cotton fibres and adds to a growing body of evidence for the prevalence of alternative splicing in the expression of MADS-box and other genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla E, Liljegren S, Pelaz S, Gold S, Burgeff C, Ditta G, Vergara-Silva F, Yanofsky M (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Angenent G, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Belaguli N, Zhou W, Trinh T, Majesky M, Schwartz R (1999) Dominant negative murine serum response factor: alternative splicing within the activation domain inhibits transactivation of serum response factor binding targets. Mol Cell Biol 19:4582–4591

    PubMed  CAS  Google Scholar 

  • Bowman J, Smyth D, Meyerowitz E (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Dev 112:1–20

    CAS  Google Scholar 

  • Castillejo C, Romera-Branchat M, Pelaz S (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J 43:586–596

    Article  PubMed  CAS  Google Scholar 

  • Chaidamsari T, Samanhudi, Sugiarti H, Santoso D, Angenent G, de Maagd R (2006) Isolation and characterization of an AGAMOUS homologue from cocoa. Plant Sci 170:968–975

    Article  CAS  Google Scholar 

  • Cheng Y, Kato N, Wang W, Li J, Chen X (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53–66

    Article  PubMed  CAS  Google Scholar 

  • Clamp M, Cuff J, Searle S, Barton G (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427

    Article  PubMed  CAS  Google Scholar 

  • Coen E, Meyerowitz E (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, van Wemt J, Dons HJ, Angenent G, van Tunen A (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S, Raes J, Florquin K, Rombauts S, Rouze P, Theißen G, Van de Peer Y (2003) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56:573–586

    Article  PubMed  CAS  Google Scholar 

  • Delaney S, Orford S, Martin-Harris M, Timmis J (2007) The fiber-specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1. Plant Cell Physiol. doi:10.1093/pcp/pcm111

  • Drummond AJ, Ashton B, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2006) Geneious v2.5. Available from http://www.geneious.com

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Omura M (2006) Cloning and characterization of 5 MADS-box cDNAs isolated from citrus fruit tissue. Sci Hortic 109:315–321

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Zhu Q, Zheng S, Li M (2007) Cloning of a MADS-box gene (GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco. J Genet Genomics 34:527–535

    Article  PubMed  CAS  Google Scholar 

  • Haigler C, Zhang D, Wilkerson C (2005) Biotechnological improvement of cotton fibre maturity. Physiol Plant 124:285–294

    Article  CAS  Google Scholar 

  • Hodgson C, Fisk R (1987) Hybridisation probe size control: optimised “oligolabelling”. Nucleic Acids Res 15:6295

    Article  PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Humphries J, Walker A, Timmis J, Orford S (2005) Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Biol 57:67–81

    Article  PubMed  CAS  Google Scholar 

  • Immink R, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent G (2003) Analysis of the petunia MADS-box transcription factor family. Mol Gen Genomics 268:598–606

    CAS  Google Scholar 

  • Jack T (2001) Plant development going MADS. Plant Mol Biol 46:515–520

    Article  PubMed  CAS  Google Scholar 

  • Joshi C, Zhou H, Huang X, Chiang V (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Kater M, Colombo L, Franken J, Busscher M, Masiero S, Campagne M, Angenent G (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Melzer R, Theißen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198

    Article  PubMed  CAS  Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8:468–471

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Koh J, Ma H, Hu Y, Endress P, Hauser B, Buzgo M, Soltis P, Soltis D (2005) Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaciae): support for the bracheate origin of the calyptra. Int J Plant Sci 166:185–198

    Article  CAS  Google Scholar 

  • Kitahara K, Matsumoto S (2000) Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Sci 151:121–134

    Article  PubMed  CAS  Google Scholar 

  • Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20:1963–1977

    Article  PubMed  CAS  Google Scholar 

  • Kramer E, Jaramillo M, Di Stilio V (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Krizek B, Fletcher J (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Cho Y, Yoon H, Suh M, Moon J, Lee I, Weigel D, Yun C, Kim J (2005) Conservation and divergence of FCA function between Arabidopsis and rice. Trends Plant Sci 58:823–838

    CAS  Google Scholar 

  • Leseberg C, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    Article  PubMed  CAS  Google Scholar 

  • Liljegren S, Ditta G, Eshed Y, Savidge B, Bowman J, Yanofsky M (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Huang Y, Ding B, Tauer CG (1999) cDNA cloning and expression of a sweetgum gene that shows homology with Arabidopsis AGAMOUS. Plant Sci 142:73–82

    Article  CAS  Google Scholar 

  • Lorkovic Z, Wieczorek Kirk D, Lambermon M, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  Google Scholar 

  • Ma H, Yanofsky M, Meyerowitz E (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  PubMed  CAS  Google Scholar 

  • Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14:877–888

    Article  PubMed  CAS  Google Scholar 

  • Miller H, Kocher T, Loy B (1995) New MADS box domains in Asparagus officinalis L.. Sex Plant Reprod 8:318–320

    Article  Google Scholar 

  • Mizukami Y, Huang H, Tudor M, Ma H (1996) Functional domains of the floral regulator AGAMOUS: characterisation of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8:831–845

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. PNAS 101:1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Orford S, Timmis J (1999) Characterisation of a cotton gene expressed late in fibre elongation. Theor Appl Genet 98:757–764

    Article  CAS  Google Scholar 

  • Orford S, Timmis J (2000) Expression of a lipid transfer protein gene family during cotton fibre development. Biochim Biophys Acta 1483:275–284

    PubMed  CAS  Google Scholar 

  • Orford S, Delaney S, Timmis J (2006) The genetic modification of cotton. In: Gordon S, Hsieh Y-L (eds) Cotton: science and technology. Woodhead Publishing Ltd, Cambridge, pp 103–129

    Google Scholar 

  • Parenicová L, de Folter S, Kieffer M, Horner D, Favalli C, Busscher J, Cook H, Ingram R, Kater M, Davies B, Angenent G, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed  CAS  Google Scholar 

  • Perl-Treves R, Kahana A, Rosenman N, Xiang Y, Silberstein L (1998) Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus L.). Plant Cell Physiol 39:701–710

    PubMed  CAS  Google Scholar 

  • Riechmann J, Meyerowitz E (1997) MADS domain proteins in plant development. J Biol Chem 378:1079–1101

    Article  CAS  Google Scholar 

  • Rijpkema A, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Curr Opin Plant Biol 10:32–38

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shi Y, Zhu S, Mao X, Feng J, Qin Y, Zhang L, Cheng J, Wei L, Wang Z, Zhu Y (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fibre cell elongation. Plant Cell 18:651–664

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T (1997) Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fibre cells. Plant Cell Physiol 38:375–378

    PubMed  CAS  Google Scholar 

  • Smith C, Valcarel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25:381–388

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Yu G, Nam J, Jeong D, An G (2000) Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta 210:519–528

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Zhu X, Gakiere B, Levanony H, Kahana A, Galili G (2002) The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiol 130:147–154

    Article  PubMed  CAS  Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Udall J, Swanson J, Haller K, Rapp R, Sparks M, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat A, Sickler B, Wilkins T, Guo J, Chen X, Scheffler J, Taliercio E, Turley R, McFadden H, Payton P, Klueva N, Allen R, Zhang D, Haigler C, Wilkerson C, Suo J, Schulze S, Pierce M, Essenberg M, Kim H, Llewellyn D, Dennis E, Kudrna D, Wing R, Paterson A, Soderlund C, Wendel J (2006) A global assembly of cotton ESTs. Genome Res 16:441–450

    Article  PubMed  Google Scholar 

  • Wang B, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. PNAS 103:7175–7180

    Article  PubMed  CAS  Google Scholar 

  • Wendel J (1989) New world tetraploid cottons contain old world cytoplasm. PNAS 86:4132–4136

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Jack T (2004) Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins. Plant Mol Biol 55:45–59

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59

    Article  PubMed  Google Scholar 

  • Yanofsky M, Ma H, Bowman J, Drews G, Feldmann K, Meyerowitz E (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35–39

    Article  PubMed  CAS  Google Scholar 

  • Zheng S, Guo Y, Xiao Y, Luo M, Hou L, Luo X, Pei Y (2004) Cloning of a MADS box protein gene (GhMADS1) from cotton (Gossypium hirsutum L.). Yi Chuan Xue Bao 31:1136–1141

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out in compliance with the current laws governing genetic experimentation in Australia. S. Orford and D. Lightfoot are supported by grants from the Cotton Research and Development Corporation (CRDC), Narrabri, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon J. Orford.

Additional information

Communicated by R. Hagemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lightfoot, D.J., Malone, K.M., Timmis, J.N. et al. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. Mol Genet Genomics 279, 75–85 (2008). https://doi.org/10.1007/s00438-007-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0297-y

Keywords

Navigation