Skip to main content
Log in

Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In the yeast Saccharomyces cerevisiae, structural genes of phospholipid biosynthesis are activated by a heterodimer of basic helix-loop-helix proteins, Ino2 and Ino4, which bind to the inositol/choline-responsive element (ICRE) UAS element. In silico, we identified Candida albicans genes, which encode proteins similar to Ino2 and Ino4 (designated CaIno2 and CaIno4). CaINO4 contains an intron with an unusual branch point sequence. Although neither CaINO2 nor CaINO4 could individually complement S. cerevisiae mutations ino2 and ino4, respectively, coexpression of both CaINO2 and CaINO4 restored inositol auxotrophy of an ino2 ino4 double mutant. CaIno2 and CaIno4 could interact in vivo as well as in vitro and together were able to bind to the ICRE from S. cerevisiae INO1. Similar to Ino2 of S. cerevisiae, CaIno2 contains two transcriptional activation domains. CaIno2 and CaIno4 interact with CaSua7 (basal transcription factor TFIIB) but not with Sua7 from S. cerevisiae. Surprisingly, CaIno2 + CaIno4 were unable to stimulate expression of a CaINO1-lacZ reporter gene while an INO1-lacZ fusion was efficiently activated. This result agrees with the finding that promoter scanning of the CaINO1 upstream region gave no evidence for CaIno2 + CaIno4 binding in vitro. We derived a consensus binding site for CaIno2 + CaIno4 (BWTCASRTG), which could be detected upstream of 25 ribosomal protein genes. Since we failed to obtain homozygous deletion mutations for CaINO2 and CaINO4, we conclude that CaIno2 and CaIno4 acquired new essential target genes among which may be ribosomal protein genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aaron KE, Pierson CA, Lees ND, Bard M (2001) The Candida albicans ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) is essential for growth. FEMS Yeast Res 1:93–101

    Article  PubMed  CAS  Google Scholar 

  • Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349

    PubMed  CAS  Google Scholar 

  • Arnaud MB, Costanzo MC, Skrzypek MS, Shah P, Binkley G, Lane C, Miyasato SR, Sherlock G (2007) Sequence resources at the Candida Genome Database. Nucleic Acids Res 35:D452–D456

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54

    Article  PubMed  CAS  Google Scholar 

  • Bailis AM, Lopes JM, Kohlwein SD, Henry SA (1992) Cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae. Nucleic Acids Res 20:1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930

    Article  PubMed  CAS  Google Scholar 

  • Biswas K, Rieger KJ, Morschhauser J (2003) Functional analysis of CaRAP1, encoding the repressor/activator protein 1 of Candida albicans. Gene 307:151–158

    Article  PubMed  CAS  Google Scholar 

  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO::TermFinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20:3710–3715

    Article  PubMed  CAS  Google Scholar 

  • Braun BR, van Het Hoog M, d’Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NA, Hoyer LL, Kohler G, Morschhauser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1:36–57

    Article  PubMed  CAS  Google Scholar 

  • Care RS, Trevethick J, Binley KM, Sudbery PE (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:792–798

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • De Backer MD, Maes D, Vandoninck S, Logghe M, Contreras R, Luyten WH (1999) Transformation of Candida albicans by electroporation. Yeast 15:1609–1618

    Article  PubMed  Google Scholar 

  • Dietz M, Heyken WT, Hoppen J, Geburtig S, Schüller HJ (2003) TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 of the yeast Saccharomyces cerevisiae. Mol Microbiol 48:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    PubMed  CAS  Google Scholar 

  • Geraghty P, Kavanagh K (2003) Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Arch Microbiol 179:295–300

    PubMed  CAS  Google Scholar 

  • Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993) Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268:10946–10952

    PubMed  CAS  Google Scholar 

  • Heyken WT, Wagner C, Wittmann J, Albrecht A, Schüller HJ (2003) Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1. Yeast 20:1177–1188

    Article  PubMed  CAS  Google Scholar 

  • Heyken WT, Repenning A, Kumme J, Schüller HJ (2005) Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56:696–707

    Article  PubMed  CAS  Google Scholar 

  • Hoppen J, Repenning A, Albrecht A, Geburtig S, Schüller HJ (2005) Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis. Yeast 22:601–613

    Article  PubMed  CAS  Google Scholar 

  • Hoshizaki DK, Hill JE, Henry SA (1990) The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthesis enzymes. J Biol Chem 265:4736–4745

    PubMed  CAS  Google Scholar 

  • Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M, Berman J, Barkai N (2005) Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938–940

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  PubMed  CAS  Google Scholar 

  • Klig LS, Antonsson B, Schmid E, Friedli L (1991) Inositol biosynthesis: Candida albicans and Saccharomyces cerevisiae genes share common regulation. Yeast 7:325–336

    Article  PubMed  CAS  Google Scholar 

  • Kraakman LS, Mager WH, Maurer KT, Nieuwint RT, Planta RJ (1989) The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes. Nucleic Acids Res 17:9693–9706

    Article  PubMed  CAS  Google Scholar 

  • Leuther KK, Salmeron JM, Johnston SA (1993) Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta sheet. Cell 72:575–585

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22:2025–2035

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647

    Article  PubMed  CAS  Google Scholar 

  • Lopes JM, Henry SA (1991) Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 19:3987–3994

    Article  PubMed  CAS  Google Scholar 

  • Mumberg D, Müller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    Article  PubMed  CAS  Google Scholar 

  • Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteway M, Brown AJ (2004) Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Piekarska K, Mol E, van den Berg M, Hardy G, van den Burg J, van Roermund C, MacCallum D, Odds F, Distel B (2006) Peroxisomal fatty acid β-oxidation is not essential for virulence of Candida albicans. Eukaryot Cell 5:1847–1856

    Article  PubMed  CAS  Google Scholar 

  • Prill SKH, Klinkert B, Timpel C, Gale CA, Schröppel K, Ernst JF (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55:546–560

    Article  PubMed  CAS  Google Scholar 

  • Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181

    Article  PubMed  CAS  Google Scholar 

  • Rudra D, Zhao Y, Warner JR (2005) Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  • Santos MA, Tuite MF (1995) The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23:1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D (2004) Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Schüller HJ, Hahn A, Tröster F, Schütz A, Schweizer E (1992a) Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J 11:107–114

    PubMed  Google Scholar 

  • Schüller HJ, Schorr R, Hoffmann B, Schweizer E (1992b) Regulatory gene INO4 of yeast phospholipid biosynthesis is positively autoregulated and functions as a trans-activator of fatty acid synthase genes FAS1 and FAS2 from Saccharomyces cerevisiae. Nucleic Acids Res 20:5955–5961

    Article  PubMed  Google Scholar 

  • Schüller HJ, Richter K, Hoffmann B, Ebbert R, Schweizer E (1995) DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: structural requirements as defined by saturation mutagenesis. FEBS Lett 370:149–152

    Article  PubMed  Google Scholar 

  • Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schüller HJ (1995) Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res 23:230–237

    Article  PubMed  CAS  Google Scholar 

  • Selmecki A, Bergmann S, Berman J (2005) Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 55:1553–1565

    Article  PubMed  CAS  Google Scholar 

  • Southard SB, Cihlar RL (1995) Analysis and expression of the Candida albicans FAS2 gene. Gene 156:133–138

    Article  PubMed  CAS  Google Scholar 

  • Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci USA 102:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Wade JT, Hall DB, Struhl K (2004) The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Wagner C, Blank M, Strohmann B, Schüller HJ (1999) Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Yeast 15:843–854

    Article  PubMed  CAS  Google Scholar 

  • Wagner C, Dietz M, Wittmann J, Albrecht A, Schüller HJ (2001) The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol Microbiol 41:155–166

    Article  PubMed  CAS  Google Scholar 

  • Zhao XJ, Cihlar RL (1994) Isolation and sequence of the Candida albicans FAS1 gene. Gene 147:119–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank Prof. J. Ernst (Heinrich-Heine-Universität Düsseldorf) for kindly providing strains of C. albicans and plasmids for gene disruption.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Schüller.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 25 kb)

(PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppen, J., Dietz, M., Warsow, G. et al. Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae . Mol Genet Genomics 278, 317–330 (2007). https://doi.org/10.1007/s00438-007-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0253-x

Keywords

Navigation