Skip to main content
Log in

Catalase-1 (CAT-1) and nucleoside diphosphate kinase-1 (NDK-1) play an important role in protecting conidial viability under light stress in Neurospora crassa

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Recently we reported that Catalase-1 (CAT-1) played an important role in protecting conidial viability in Neurospora crassa, and interacted with a light signal transducer, nucleoside diphosphate kinase-1 (NDK-1). To disclose the functional interaction between CAT-1 and NDK-1 at the genetic level, we created CAT-1 and NDK-1 double mutants, cat-1;ndk-1-1 and cat-1;ndk-1-2, by crossing single mutants of cat-1 RIP and ndk-1 P72H previously isolated in our laboratory. The double mutant strains grew normally, but showed increased CAT-2 activity. In cat-1 RIP, NDK activity was increased when dCDP was used as a substrate. ndk-1 P72H, cat-1;ndk-1-1, and cat-1;ndk-1-2 were more sensitive to riboflavin than the wild type and cat-1 RIP under strong light (100 μE m−2 s−1). The pull-down experiment suggests that His-tagged NDK-1 is bound to [32P]NADH. However, his-tagged NDK-1P72H was not bound to [32P]NADH. The double mutants showed much lower conidial viability and lost all conidial germination ability much more rapidly than cat-1 RIP, when they were cultured under continuous light for more than 2 weeks. These results indicate that the interaction of CAT-1 with NDK-1 plays an important role in supporting the survival of conidia under oxidative and light-induced stress including singlet oxygen, and confirm our former conclusion that reactive oxygen species play an important role in light signal transduction via NDK-1 at the genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernard MA, Ray NB, Olcott MC, Hendricks SP, Mathews CK (2000) Metabolic functions of microbial nucleoside diphosphate kinases. J Bioenerg Biomembr 32:259–267

    Article  PubMed  CAS  Google Scholar 

  • Cuello F, Schulze RA, Heemeyer F, Meyer HE, Lutz S, Jakobs KH, Niroomand F, Wieland T (2003) Activation of heterotrimeric G proteins by a highly energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gβ subunits. J Biol Chem 278:7220–7226

    Article  PubMed  CAS  Google Scholar 

  • Davis RH, De Serres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 71:79–143

    Article  Google Scholar 

  • Degli-Innocenti F, Russo VE (1984) Isolation of new white collar mutants of Neurospora crassa and studies on their behaviour in the blue-light-induced formation of protoperithecia. J Bacteriol 159:757–761

    PubMed  CAS  Google Scholar 

  • Diaz A, Horjales E, Rudino-Pinera E, Arreola R, Hansberg W (2004) Unusual Cys–Tyr covalent bond in a large catalase. J Mol Biol 342:971–985

    Article  PubMed  CAS  Google Scholar 

  • Diaz A, Munoz-Clares RA, Rangel P, Valdes VJ, Hansberg W (2005) Functional and structural analysis of catalase oxidized by singlet oxygen. Biochimie 87:205–214

    Article  PubMed  CAS  Google Scholar 

  • Dolamns DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev 1:380–387

    Google Scholar 

  • Feldman JF (1982) Genetic approaches to circadian clocks. Annu Rev Plant Physiol 33:583–608

    Article  CAS  Google Scholar 

  • Fukamatsu Y, Yabe N, Hasunuma K (2003) Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol 44:982–989

    Article  PubMed  CAS  Google Scholar 

  • Harding RW, Turner RV (1981) Photoregulation of the carotenoid biosynthetic pathways in albino and white collar mutants of Neurospora crassa. Plant Physiol 68:745–749

    PubMed  CAS  Google Scholar 

  • Harding RW, Melles S (1984) Genetic analysis of the phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol 72:996–1000

    Article  Google Scholar 

  • Hillar A, Nicholls TP, Switala J, Loewen PC (1994) NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Biochem J 300:531–539

    PubMed  CAS  Google Scholar 

  • Iigusa H, Yoshida Y, Hasunuma K (2005) Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett 579:4012–4016

    Article  PubMed  CAS  Google Scholar 

  • Kirkman HN, Rolfo M, Ferraris AM, Gaetan GF (1999) Mechanisms of protection of catalase by NADPH. J Biol Chem 274:13908–13914

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Yoshida Y, Hasunuma K (2006) Photomorphogenetic characteristics are severely affected in nucleoside diphosphate kinase-1 (ndk-1)-disrupted mutants in Neurospora crassa. Mol Genet Genomics 275:9–17

    Article  PubMed  CAS  Google Scholar 

  • Lledias F, Rangel P, Hansberg W (1998) Oxidation of catalase by singlet oxygen. J Biol Chem 273:10630–10637

    Article  PubMed  CAS  Google Scholar 

  • Lledias F, Rangel P, Hansberg W (1999) Singlet oxygen is part of a hyperoxidant state generated during spore germination. Free Radic Biol Med 26:1396–1404

    Article  PubMed  CAS  Google Scholar 

  • Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    Article  PubMed  CAS  Google Scholar 

  • Michan S, Lledias F, Baldwin JD, Natvig DO, Hansberg W (2002) Regulation and oxidation of two large monofunctional catalases. Free Radic Biol Med 33:521–532

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Dorado J, Inouye S, Inouye M (1990) Nucleoside diphosphate kinase from Myxococcus xanthus. II. Biochemical characterization. J Biol Chem 265:2707–2712

    PubMed  Google Scholar 

  • Oda K, Hasunuma K (1997) Genetic analysis of signal transduction through light-induced protein phosphorylation in Neurospora crassa. Mol Gen Genet 256:593–601

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Yoshida Y, Ichimura K, Aoyagi C, Yabe N, Hasunuma K (1999) Isolation and characterization of Neurospora crassa nucleoside diphosphate kinase NDK-1. Eur J Biochem 266:709–714

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Yoshida Y, Yabe N, Hasunuma K (2001) A point mutation in nucleoside diphosphate kinase results in a deficient light response for perithecial polarity in Neurospora crassa. J Biol Chem 276:21228–21234

    Article  PubMed  CAS  Google Scholar 

  • Omata Y, Lewis JB, Rotenberg S, Lockwood PE, Messer RL, Noda M, Hsu SD, Sano H, Wataha JC (2006) Intra- and extracellular reactive oxygen species generated by blue light. J Biomed Mater Res A 77(3):470–477

    PubMed  CAS  Google Scholar 

  • Sargent ML, Briggs WR (1967) The effects of blue light on a circadian rhythm of conidiation in Neurospora. Plant Physiol 42:1504–1510

    PubMed  Google Scholar 

  • Schliebs W, Würtz C, Kunau W-H, Veenhuis M, Rottensteiner H (2006) A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot cell 5(9):1490–1052

    Article  PubMed  CAS  Google Scholar 

  • Schmit JC, Brody S (1976) Biochemical genetics of Neurospora crassa conidial germination. Bacteriol Rev 40:1–41

    PubMed  CAS  Google Scholar 

  • Wang N, Yoshida Y, Hasunuma K (2007) Loss of Catalase-1 (CAT-1) results in decreased conidial viability enhanced by exposure to light in Neurospora crassa. Mol Genet Genomics 277:13–22

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Hasunuma K (2004) Reactive oxygen species affect photo-morphogenesis in Neurospora crassa. J Biol Chem 279:6986–6993

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Hasunuma K (2006) Light-dependent subcellular localization of nucleoside phosphate kinase-1 in Neurospora crassa. FEMS Microbiol Lett 261:64–68

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Ogura Y, Hasunuma K (2006) Interaction of nucleoside diphosphate kinase and catalases for stress and light responses in Neurospora crassa. FEBS Lett 580(13):3282–3286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid from the Japan Society for the Promotion of Science, the Kihara Memorial Yokohama Foundation for the Advancement of Life Science, the Mishima Kaiun Memorial Foundation, the Yamada Science Foundation, and co-operative research support from Nissan Motor Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Hasunuma.

Additional information

Communicated by J. Perez-Martin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2007_244_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Yoshida, Y. & Hasunuma, K. Catalase-1 (CAT-1) and nucleoside diphosphate kinase-1 (NDK-1) play an important role in protecting conidial viability under light stress in Neurospora crassa . Mol Genet Genomics 278, 235–242 (2007). https://doi.org/10.1007/s00438-007-0244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0244-y

Keywords

Navigation