Skip to main content

Advertisement

Log in

The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Arabidopsis LSD1-related proteins that contain LSD1-like zinc finger domains have been identified to be involved in disease resistance and programmed cell death. To investigate the potential role of LSD1-related gene in rice (Oryza sativa L.), we cloned an LSD1 ortholog, OsLOL2, from the rice cDNA plasmid library. The OsLOL2 gene is predicted to encode a polypeptide of 163 amino acids with two LSD1-like zinc finger domains with 74.5% identity to those of LSD1. Southern blot analysis indicated that OsLOL2 was a single-copy gene in the rice genome. Transgenic rice lines carrying the antisense strand of OsLOL2 with decreased expression of OsLOL2 had dwarf phenotypes, and the dwarfism could be restored by exogenous GA3 treatment, suggesting that the dwarfism was the result of a deficiency in bioactive gibberellin (GA). In agreement with this possibility, the content of endogenous bioactive GA1 decreased in the antisense transgenic lines. Expression of OsKS1, one of the genes encoding for GA biosynthetic enzymes, was suppressed in the antisense transgenic lines. Sense transgenic lines with increased expression of OsLOL2 were more resistant to rice bacterial blight, while antisense transgenic lines were less resistant to rice bacterial blight. The OsLOL2-GFP (green fluorescence protein) fusion protein was localized in the nucleus of cells of transgenic BY2 tobacco (Nicotiana tabacum L.). These data suggest that OsLOL2 is involved in rice growth and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ait-Ali T, Frances S, Weller JL, Reid JB, Kendrick RE, Kamiya Y (1999) Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol 121:783–791

    Article  PubMed  CAS  Google Scholar 

  • Alcazar R, Garcia-Martinez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J 43:425–436

    Article  PubMed  CAS  Google Scholar 

  • Aviv DH, Rusterucci C, Holt BF III, Dietrich RA, Parker JE, Dangl JL (2002) Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent. Plant J 29:381–391

    Article  PubMed  CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Recognition and signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinosteriod. Plant Physiol 127:450–458

    Article  PubMed  CAS  Google Scholar 

  • Carrera E, Jackson SD, Prat S (1999) Feedback control and diurnal regulation of gibberellin 20-oxidase transcript level in potato. Plant Physiol 119:765–774

    Article  PubMed  CAS  Google Scholar 

  • Chiang H-H, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. Plant Cell 7:195–201

    Article  PubMed  CAS  Google Scholar 

  • Coles J, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  PubMed  CAS  Google Scholar 

  • Cowling RJ, Kamiya Y, Seto H, Harberd NP (1998) Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis. Plant Physiol 117:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (ed) (1995) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, The Netherlands

  • Dellaporta SL, Wood J, Hicks JB (1984) Maize DNA miniprep. In: Russell M (ed) Molecular biology of plants: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 36–37

    Google Scholar 

  • Desgagne-Penix I, Eakanunkul S, Coles JP, Phillips AL, Hedden P, Sponsel VM (2005) The auxin transport inhibitor response 3 (tir3) allele of BIG and auxin transport inhibitors affect the gibberellin status of Arabidopsis. Plant J 41:231–242

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–577

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694

    Article  PubMed  CAS  Google Scholar 

  • Epple P, Mack AA, Morris VRF, Dangl JL (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related plant-specific zinc finger proteins. Proc Natl Acad Sci USA 100:6831–683

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  PubMed  CAS  Google Scholar 

  • Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, Kamiya Y, Sun T (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellin. Plant Cell 12:901–915

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Verma DPS (1997) Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division. Plant Cell 9:157–169

    Article  PubMed  CAS  Google Scholar 

  • He C, Fong SHT, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12:1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Jackson SD, James PE, Carrera E, Prat S, Thomas B (2000) Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol 124:423–430

    Article  PubMed  CAS  Google Scholar 

  • Jordan ET, Hatfield PM, Hondred D, Talon M, Zeevaart JAD, Vierstra RD (1995) Phytochrome A overexpression in transgenic tobacco (correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels). Plant Physiol 107:797–805

    Article  PubMed  CAS  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rept 57:537–541

    Google Scholar 

  • Kusaba S, Kano-Murakami Y, Matsuoka M, Tamaoki M, Sakamoto T, Yamaguchi I, Fukumoto M (1998) Alteration of hormone levels in transgenic tobacco plants overexpressing a rice homobox gene OSH1. Plant Physiol 111:471–476

    Article  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729

    Article  PubMed  CAS  Google Scholar 

  • Margis-Pinheiro M, Zhou X-R, Zhu Q-H, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819–833

    Article  PubMed  CAS  Google Scholar 

  • Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687–700

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80

    PubMed  CAS  Google Scholar 

  • Rebers M, Kaneta T, Kawaide H, Yamaguchi S, Yang Y-Y, Imai R, Sekimoto H, Kamiya Y (1999) Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J 17:241–250

    Article  PubMed  CAS  Google Scholar 

  • Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel DJ (2003) Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132:106–117

    Article  PubMed  CAS  Google Scholar 

  • Ross JJ, O'Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552

    Article  PubMed  CAS  Google Scholar 

  • Rusterucci C, Aviv DH, Holt BF III, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz B, Ausubel F, Baker B, Ellis JG, Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, ShiI K, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–545

    Article  PubMed  CAS  Google Scholar 

  • Takeda K (1977) Internode elongation and dwarfism in some gramineous plant. Gamma Field Sym 16:1–18

    Google Scholar 

  • Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuoka M (1998) Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. Plant J 15:391–400

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Pei Z, Tian Y, He C (2005a) OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact 18:375–384

    Article  CAS  Google Scholar 

  • Wang L, Tian Y, He C (2005b) Cloning of a novel rice gene OsLSD1 and bioinformatic analysis of LSD1-like gene family from Arabidopsis and rice. Prog Biochem Biophys 32:268–274

    CAS  Google Scholar 

  • Ward JM, Smith AM, Shah PK, Galanti SE, Yi H, Demianski AJ, Graaff E, Keller B, Neff MM (2006) A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell 18:29–39

    Article  PubMed  CAS  Google Scholar 

  • Xu YL, Li L, Wu K, Peeters AJM, Gage DA, Zeevaart JAD (1995) The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci USA 92:6640–6644

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals, Plant Cell Physiol 41:251–257

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13:869–876

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Research Program (The “973” program) of the Ministry of Science and Technology of China (Grant: 2006CB101900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaozu He.

Additional information

Communicated by K. Shirasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., He, C. The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance. Mol Genet Genomics 278, 85–94 (2007). https://doi.org/10.1007/s00438-007-0232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0232-2

Keywords