Skip to main content
Log in

Molecular characterization of an ethylene receptor gene (CcETR1) in coffee trees, its relationship with fruit development and caffeine content

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To understand the importance of ethylene receptor genes in the quality of coffee berries three full-length cDNAs corresponding to a putative ethylene receptor gene (ETR1) were isolated from Coffea canephora cDNA libraries. They differed by their 3′UTR and contained a main ORF and a 5′UTR short ORF putatively encoding a small polypeptide. The CcETR1 gene, present as a single copy in the C. canephora genome, contained five introns in the coding region and one in its 5′UTR. Alternative splicing can occur in C. canephora and C. pseudozanguebariae, leading to a truncated polypeptide. C. pseudozanguebariae ETR1 transcripts showed various forms of splicing alterations. This gene was equally expressed at all stages of fruit development. A segregation study on an inter-specific progeny showed that ETR1 is related to the fructification time, the caffeine content of the green beans, and seed weight. Arabidopsis transformed etiolated seedlings, which over-expressed CcETR1, displayed highly reduced gravitropism, but the triple response was observed in an ethylene enriched environment. These plants behaved like a low-concentration ethylene-insensitive mutant thus confirming the receptor function of the encoded protein. This gene showed no induction during the climacteric crisis but some linkage with traits related to quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeles F, Morgan P, Saltveit M (1992) Ethylene in plant biology. Academic, San Diego

    Google Scholar 

  • Akaffou DS, Ky CL, Barre P, Hamon P, Louarn J, Noirot M (2003) Identification and mapping of a major gene (Ft1) involved in fructification time in the interspecific cross Coffea pseudozanguebariae × C. liberica var. Dewevrei: impact on caffeine content and seed weight. Theoretical and Applied Genetics 106:1486–1490

    PubMed  CAS  Google Scholar 

  • Barre P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (1998) Inheritance of caffeine and heteroside contents in an interspecific cross between a cultivated coffee species Coffea liberica var dewevrei and a wild species caffeine-free C. pseudozanguebariae. Theor Appl Genet 96:306–311

    Article  CAS  Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103:7923–7928

    Article  PubMed  CAS  Google Scholar 

  • Bassett CL, Artlip TS, Callahan AM (2002) Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215:679–688

    Article  PubMed  CAS  Google Scholar 

  • Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11:1520–1526

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  PubMed  CAS  Google Scholar 

  • Chen QG, Bleecker AB (1995) Analysis of ethylene signal-transduction kinetics associated with seedling-growth response and chitinase induction in wild-type and mutant Arabidopsis. Plant Physiol. 108:597–607

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-F, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Jones B, Li ZG, Lelievre JM, Pech JC, Latche A (2003) Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L.) with/without cold requirement. J Exp Bot 54:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Kim SY, Park WD (1995) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5[prime] and 3[prime] flanking sequences and the leader intron. Plant Cell 7:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    Article  PubMed  CAS  Google Scholar 

  • Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428–1438

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Golan A, Tepper M, Soudry E, Horwitz BA, Gepstein S (1996) Cytokinin, acting through ethylene, restores gravitropism to Arabidopsis seedlings grown under red light. Plant Physiol 112:901–904

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin in Plant Biol 7:40–49

    Article  CAS  Google Scholar 

  • Hamon S, Anthony F, Le Pierres D (1984) La variabilité génétique des caféiers spontanés de la section Mozambicoffea A. Chev I. Précisions sur deux espèces affines:Coffea pseuzanguebariae Bridson et C. sp. A. Bridson.:. Bull Mus Nath Hist Nat 2:207–223

    Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  PubMed  CAS  Google Scholar 

  • Jeong Y-M, Mun J-H, Lee I, Woo JC, Hong CB, Kim S-G (2006) Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol 140:196–209

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Itoh E, Whittier RF, Shibata D (1998) Increase of foreign gene expression in monocot and dicot cells by an intron in the 5′ untranslated region of a soybean phosphoenolpyruvate carboxylase gene. Biosci Biotechnol Biochem 62:151–153

    Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ (2002) Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 53:2057–2063

    Article  PubMed  CAS  Google Scholar 

  • Ky CL, Louarn J, Guyot B, Charrier A, Hamon S, Noirot M (1999) Relations between and inheritance of chlorogenic acid contents in an interspecific cross between Coffea pseudozanguebariae and Coffea liberica var ‘dewevrei’. Theor Appl Genet 98:628–637

    Article  CAS  Google Scholar 

  • Ky CL et al (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    Article  CAS  Google Scholar 

  • Lashbrook CC, Tieman DM, Klee HJ (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15:243–252

    Article  PubMed  CAS  Google Scholar 

  • Lashermes P et al (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  PubMed  CAS  Google Scholar 

  • Leroy T et al (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet:1–10

  • Liscum E, Hangarter RP (1993) Genetic evidence that the red-absorbing form of phytochrome B modulates gravitropism in Arabidopsis thaliana. Plant Physiol 103:15–19

    PubMed  CAS  Google Scholar 

  • Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16:199–207

    Article  PubMed  CAS  Google Scholar 

  • Mahesh V et al (2006) Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep:1–7

  • Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  PubMed  CAS  Google Scholar 

  • Mize GJ, Ruan H, Low JJ, Morris DR (1998) The inhibitory upstream open reading frame from mammalian S-adenosylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions. J Biol Chem 273:32500–32505

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73:857–871

    Article  PubMed  CAS  Google Scholar 

  • Pereira LFP, Galvao RM, Kobayashi AK, CaçãoII SMB, Esteves VLG (2005) Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L. Braz J Plant Physiol 17:283–289

    Article  CAS  Google Scholar 

  • Perin C et al (2002) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309

    Article  PubMed  CAS  Google Scholar 

  • Plesse B, Criqui M-C, Durr Ae, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  PubMed  CAS  Google Scholar 

  • Poncet V, Hamon P, Minier J, Carasco C, Hamon S, Noirot M (2004) SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 47:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136:2961–2970

    Article  PubMed  CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) Reversion-to-ethylene sensitivity1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, Esch J, Hall A, Binder B, Schaller G, Bleeker A (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sato-Nara K, Yuhashi K-I, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–330

    Article  PubMed  CAS  Google Scholar 

  • Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270:12526–12530

    Article  PubMed  CAS  Google Scholar 

  • Shaw CH (1995) Introduction of cloning plasmids into Agrobacterium tumefaciens. Methods Mol Biol 49:33–37

    PubMed  CAS  Google Scholar 

  • Steed CL, Taylor LK, Harrison MA (2004) Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems. Plant Growth Regul 43:117–125

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484

    Article  CAS  Google Scholar 

  • Zhou HL et al (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–1250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FONACIT and INIA, Venezuela, for doctoral scholarship to Mr. J. Bustamante.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre de Kochko.

Additional information

Communicated by H. Hirt.

The nucleotide sequences data reported here are available in the DDBJ/EMBL/GenBank databases under the following Accession Nos. EF107672, EF107673, EF107674, EF107675, EF107676, EF107677, EF107678, EF107679, EF107680, EF107681, EF107682, EF107683, EF107684, EF107685, EF107686, EF107687.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante-Porras, J., Campa, C., Poncet, V. et al. Molecular characterization of an ethylene receptor gene (CcETR1) in coffee trees, its relationship with fruit development and caffeine content. Mol Genet Genomics 277, 701–712 (2007). https://doi.org/10.1007/s00438-007-0219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0219-z

Keywords

Navigation