Skip to main content

Advertisement

Log in

Both sense and antisense strands of the LTR of the Schistosoma mansoni Pao-like retrotransposon Sinbad drive luciferase expression

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Long terminal repeat (LTR) retrotransposons, mobile genetic elements comprising substantial proportions of many eukaryotic genomes, are so named for the presence of LTRs, direct repeats about 250–600 bp in length flanking the open reading frames that encode the retrotransposon enzymes and structural proteins. LTRs include promotor functions as well as other roles in retrotransposition. LTR retrotransposons, including the Gypsy-like Boudicca and the Pao/BEL-like Sinbad elements, comprise a substantial proportion of the genome of the human blood fluke, Schistosoma mansoni. In order to deduce the capability of specific copies of Boudicca and Sinbad LTRs to function as promotors, these LTRs were investigated analytically and experimentally. Sequence analysis revealed the presence of TATA boxes, canonical polyadenylation signals, and direct inverted repeats within the LTRs of both the Boudicca and Sinbad retrotransposons. Inserted in the reporter plasmid pGL3, the LTR of Sinbad drove firefly luciferase activity in HeLa cells in its forward and inverted orientation. In contrast, the LTR of Boudicca did not drive luciferase activity in HeLa cells. The ability of the Sinbad LTR to transcribe in both its forward and inverted orientation represents one of few documented examples of bidirectional promotor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe H, Ohbayashi F, Shimada T, Sugasaki T, Kawai S, Mita K, Oshiki T (2000) Molecular structure of a novel gypsy-Ty3-like retrotransposon (Kabuki) and nested retrotransposable elements on the W chromosome of the silkworm Bombyx mori. Mol Gen Genet 263:916–924

    Article  PubMed  CAS  Google Scholar 

  • Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116

    Article  PubMed  CAS  Google Scholar 

  • Awasaki T, Juni N, Yoshida KM (1996) An eye imaginal disc-specific transcriptional enhancer in the long terminal repeat of the tom retrotransposon is responsible for eye morphology mutations of Drosophila ananassae. Mol Gen Genet 251:161–166

    PubMed  CAS  Google Scholar 

  • Bae YA, Kong Y (2003) Divergent long-terminal-repeat retrotransposon families in the genome of Paragonimus westermani. Korean J Parasitol 41:221–231

    Article  PubMed  Google Scholar 

  • Bae YA, Moon SY, Kong Y, Cho SY, Rhyu MG (2001) CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol 18:1474–1483

    PubMed  CAS  Google Scholar 

  • Bowen NJ, McDonald JF (1999) Genomic analysis of Caenorhabditis elegans reveals ancient families of retrovirus-like elements. Genome Res 9:924–935

    Article  PubMed  CAS  Google Scholar 

  • Brindley PJ (2005) The molecular biology of schistosomes. Trends Parasitol 21:533–536

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh MH, Landry S, Audet B, Arpin-Andre C, Hivin P, Pare ME, Thete J, Wattel E, Marriott SJ, Mesnard JM, Barbeau B (2006) HTLV-I antisense transcripts initiating in the 3′LTR are alternatively spliced and polyadenylated. Retrovirology 3:15

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371(6494):215–220

    Article  PubMed  CAS  Google Scholar 

  • Chitsulo L, Loverde P, Engels D (2004) Schistosomiasis. Nat Rev Microbiol 2:12–13

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, NY

  • Copeland CS, Brindley PJ, Heyers O, Michael SF, Johnston DA, Williams DJ, Ivens A, Kalinna BH (2003) Boudicca, a retrovirus-like, LTR retrotransposon from the genome of the human blood fluke, Schistosoma mansoni. J Virol 77:6153–6166

    Article  PubMed  CAS  Google Scholar 

  • Copeland CS, Heyers O, Kalinna BH, Bachmair A, Stadler PF, Hofacker IL, Brindley PJ (2004) Structural and evolutionary analysis of the transcribed sequence of Boudicca, a Schistosoma mansoni retrotransposon. Gene 329:103–114

    Article  PubMed  CAS  Google Scholar 

  • Copeland CS, Laha T, Brindley PJ (2005b) Schistosome Long terminal repeat retrotransposons. In: Brindley PJ (ed) Mobile genetic elements in metazoan parasites. Eurekah Press/Landes Bioscience, Georgetown, TX, pp315–323

  • Copeland CS, Lewis FA, Brindley PJ (2006) Identification of the Boudicca and Sinbad retrotransposons in the genome of the human blood fluke Schistosoma haematobium. Mem Inst Osv Cruz 101(5):565–571

    CAS  Google Scholar 

  • Copeland CS, Mann VH, Morales ME, Kalinna BH, Brindley PJ (2005a) The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol Biol 5:20

    Article  CAS  Google Scholar 

  • Crayton ME, Ladd CE, Sommer M, Hampikian G, Strausbaugh LD (2004) An organizational model of transcription factor binding sites for a histone promoter in D. melanogaster. In Silico Biol 4:537–548

    CAS  Google Scholar 

  • Curcio MJ, Garfinkel DJ (1994) Heterogeneous functional Ty1 elements are abundant in the Saccharomyces cerevisiae genome. Genetics 136:1245–1259

    PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12(10):1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Dunn CA, Medstrand P, Mager DL (2003) An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci USA 100:12841–12846

    Article  PubMed  CAS  Google Scholar 

  • Dupressoir A, Heidmann T (1996) Germ line-specific expression of intracisternal A-particle retrotransposons in transgenic mice. Mol Cell Biol 16:4495–4503

    PubMed  CAS  Google Scholar 

  • Gilboa E, Mitra SW, Goff S, Baltimore D (1979) A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93–100

    Article  PubMed  CAS  Google Scholar 

  • Hindmarsh P, Leis J (1999) Retroviral DNA integration. Microbiol Mol Biol Rev 63:836–843

    PubMed  CAS  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591):129–149

    Article  PubMed  CAS  Google Scholar 

  • Johnson P, Friedmann T (1990) Limited bidirectional activity of two housekeeping gene promoters: human HPRT and PGK. Gene 88:207–213

    Article  PubMed  CAS  Google Scholar 

  • Katzman M, Katz RA, Skalka AM, Leis J (1989) The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327

    PubMed  CAS  Google Scholar 

  • Kines KJ, Mann VH, Morales ME, Shelby BD, Kalinna BH, Gobert GN, Chirgwin SR, Brindley PJ (2006) Transduction of Schistosoma mansoni by vesicular stomatitis virus glycoprotein-pseudotyped Moloney murine leukemia retrovirus. Exp Parasitol 112:209–220

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange–Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox R, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  PubMed  CAS  Google Scholar 

  • Lavie L, Maldener E, Brouha B, Meese EU, Mayer J (2006) The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res 14(11):2253–2260

    Article  CAS  Google Scholar 

  • Le Paslier MC, Pierce RJ, Merlin F, Hirai H, Wu W, Williams DL, Johnston D, LoVerde PT, Le Paslier D (2000) Construction and characterization of a Schistosoma mansoni bacterial artificial chromosome library. Genomics 65:87–94

    Article  PubMed  CAS  Google Scholar 

  • Lecher P, Bucheton A, Pelisson A (1997) Expression of the Drosophila retrovirus gypsy as ultrastructurally detectable particles in the ovaries of flies carrying a permissive flamenco allele. J Gen Virol 78:2379–2388

    PubMed  CAS  Google Scholar 

  • Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2:e2

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S, Eickbush TH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • McClure MA (1991) Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol 8:835–856

    PubMed  CAS  Google Scholar 

  • Medstrand P, Landry JR, Mager DL (2001) Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 276:1896–1903

    Article  PubMed  CAS  Google Scholar 

  • Sharon G, Burkett TJ, Garfinkel DJ (1994) Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol 14:6540–6551

    PubMed  CAS  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21:1973–1985

    Article  PubMed  CAS  Google Scholar 

  • Tanaka AS, Tanaka M, Komuro K (1998) A highly efficient method for the site-specific integration of transfected plasmids into the genome of mammalian cells using purified retroviral integrase. Gene 216:67–76

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Travers MT, Cambot M, Kennedy HT, Lenoir GM, Barber MC, Joulin V (2005) Asymmetric expression of transcripts derived from the shared promoter between the divergently oriented ACACA and TADA2L genes. Genomics 85:71–84

    Article  PubMed  CAS  Google Scholar 

  • Tubio JMC, Naveira H, Costas J (2005) Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. Mol Biol Evol 22:29–39

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush T (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Yoshino TP, Wu XJ, Liu HD (1998) Transfection and heat-inducible expression of molluscan promoter-luciferase reporter gene constructs in the Biomphalaria glabrata embryonic snail cell line. Am J Trop Med Hyg 59:414–420

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Edward Pearce for the provision of the GST28-A-pGL3 construct. We thank Tulane University for Dissertation Fellowship support for CSC. PJB is a recipient of a Burroughs Welcome Fund scholar award in Molecular Parasitology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia S. Copeland.

Additional information

Communicated by M.-A. Grandbastien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copeland, C.S., Mann, V.H. & Brindley, P.J. Both sense and antisense strands of the LTR of the Schistosoma mansoni Pao-like retrotransposon Sinbad drive luciferase expression. Mol Genet Genomics 277, 161–170 (2007). https://doi.org/10.1007/s00438-006-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0181-1

Keywords

Navigation