Skip to main content
Log in

Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den Bosch N, Pot L, Kuiper MT (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    Article  PubMed  CAS  Google Scholar 

  • Amor D, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo K (2004) Human centromere repositioning “in progress”. Proc Natl Acad Sci USA 101:6542–6547

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito M, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    Article  PubMed  CAS  Google Scholar 

  • Gray KM, White JW, Costanzi C, Gillespie D, Schroeder WT, Calabretta B, Saunders GF (1985) Recent amplification of an alpha satellite DNA in humans. Nucleic Acids Res 13:521–535

    PubMed  CAS  Google Scholar 

  • Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205

    Article  PubMed  CAS  Google Scholar 

  • Haupt W, Fischer TC, Winderl S, Fransz P, Torres-Ruiz RA (2001) The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J 27:285–296

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11:31–42

    Article  PubMed  CAS  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    Article  PubMed  CAS  Google Scholar 

  • Jasencakova Z, Meister A, Schubert I (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110:83–92

    PubMed  CAS  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Johnson L, Cao X, Jacobsen S (2002) Interplay between two epigenetic marks DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12:1360–1367

    Article  PubMed  CAS  Google Scholar 

  • Karpen G, Allshire R (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:486–496

    Article  Google Scholar 

  • Kawabe A, Nasuda S (2006) Polymorphic chromosomal specificity of centromeric satellite families in Arabidopsis halleri spp. gemmifera. Genetica 126:335–342

    Article  PubMed  CAS  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    Article  PubMed  CAS  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T (2004) Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genomics 270:524–532

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert P, Zhong CX, Henikoff S, Jiang J (2003) Choromatin immunoprecipitation reveales that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Hy TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasakasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLos Biol 3:e196. Epub 2005 May 24

  • Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 7:1045–1053

    PubMed  CAS  Google Scholar 

  • du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (1991) Evolution of alpha satellite. Curr Opin Genet Dev 1:509–514

    Article  PubMed  CAS  Google Scholar 

  • Wolfe J, Darling SM, Erickson RP, Craig IW, Buckle VJ, Rigby PW, Willard HF, Goodfellow PN (1985) Isolation and characterization of an alphoid centromeric repeat family from the human Y chromosome. J Mol Biol 182:477–485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Akiko Terui for technical assistance. Special thanks to Paul Talbert and Steve Henikoff for the anti-HTR12 antibody, Ales Pecinka and Ingo Schubert for the BAC clone information for the chromosomal painting, Federico Tessadori and Paul Fransz for technical advice, and Eric Richards for critical comments on the manuscript. We acknowledge Arabidopsis Biological Stock Center at Ohio State University for the seed stocks. Supported by Grant-in-Aid for Creative Scientific Research 14GS0321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuji Kakutani.

Additional information

Communicated by A. Aguilera.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, H., Miura, A., Takashima, K. et al. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana . Mol Genet Genomics 277, 23–30 (2007). https://doi.org/10.1007/s00438-006-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0172-2

Keywords

Navigation