Skip to main content
Log in

Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 14 November 2006

Abstract

RNA editing is a process that modifies the information in transcripts of almost all angiosperm mitochondrial protein-coding genes. In order to determine the frequency and distribution of mitochondrial RNA editing in Beta vulgaris, cDNAs were sequenced and compared to the published genome sequence. 357 C to U conversions were identified across the 31 known protein genes and pseudogenes in Beta, the fewest so far for a plant mitochondrial genome. Editing patterns in the putative gene orf518 indicate that it is most likely a functional ccmC homolog, indicating that patterns of editing can be a useful determinant of gene functionality. orf518 also contains a triplicated repeat region whose members are nearly identical yet differentially edited, most likely due to differences in the sequence context of the editing sites. In addition, we show that partial editing in Beta is common at silent editing sites but rare at nonsilent editing sites, extending previous observations to a complete plant mitochondrial genome. Finally, the degree of partial editing observed for certain genes was dependent on the choice of primers used, demonstrating that care must be taken when designing primers for use in editing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams KL, Qiu Y-L, Stoutemyer M, Palmer JD (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA 99:9905–9912

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Rosenblueth M, Qiu Y-L, Palmer JD (2001) Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. Genetics 158:1289–1300

    PubMed  CAS  Google Scholar 

  • Begu D, Mercado A, Farre JC, Moenne A, Holuigue L, Araya A, Jordana X (1998) Editing status of mat-r transcripts in mitochondria from two plant species: C-to-U changes occur in putative functional RT and maturase domains. Curr Genet 33:420–428

    Article  PubMed  CAS  Google Scholar 

  • Borner GV, Morl M, Wissinger B, Brennicke A, Schmelzer C (1995) RNA editing of a group II intron in Oenothera as a prerequisite for splicing. Mol Gen Genet 246:739–744

    Article  PubMed  CAS  Google Scholar 

  • Brennicke A, Marchfelder A, Binder S (1999) RNA editing. FEMS Microbiol Rev 23:297–316

    Article  PubMed  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Choury D, Farre JC, Jordana X, Araya A (2004) Different patterns in the recognition of editing sites in plant mitochondria. Nucleic Acids Res 32:6397–6406

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666

    Article  PubMed  CAS  Google Scholar 

  • Estiati A, Kubo T, Mikami T (1998) The ribosomal protein S7 gene is transcribed and edited in sugar beet mitochondria. Physiol Plant 102:325–327

    Article  CAS  Google Scholar 

  • Fey J, Weil JH, Tomita K, Cosset A, Dietrich A, Small I, Marechal-Drouard L (2001) Editing of plant mitochondrial transfer RNAs. Acta Biochim Pol 48:383–389

    PubMed  CAS  Google Scholar 

  • Giege P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329

    Article  PubMed  CAS  Google Scholar 

  • Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531

    Article  PubMed  CAS  Google Scholar 

  • Grohmann L, Brennicke A, Schuster W (1992) The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. Nucleic Acids Res 20:5641–5646

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Bonnard G, Lamattina L, Grienenberger JM (1991) Expression of the wheat mitochondrial nad3-rps12 transcription unit: correlation between editing and mRNA maturation. Plant Cell 3:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Itchoda N, Nishizawa S, Nagano H, Kubo T, Mikami T (2002) The sugar beet mitochondrial nad4 gene: an intron loss and its phylogenetic implication in the Caryophyllales. Theor Appl Genet 104:209–213

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki K, Ozawa K, Kazama S, Kubo N, Akihama T (1995) Creation of an initiation codon by RNA editing in the coxI transcript from tomato mitochondria. Curr Genet 28:415–422

    Article  PubMed  CAS  Google Scholar 

  • Kempken F, Mullen JA, Pring DR, Tang HV (1991) RNA editing of sorghum mitochondrial atp6 transcripts changes 15 amino acids and generates a carboxy-terminus identical to yeast. Curr Genet 20:417–422

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Mikami T (1996) A duplicated sequence in sugarbeet mitochondrial transcripts is differentially edited: analysis of orfB and its derivative orf324 mRNAs. Biochim Biophys Acta 1307:259–262

    PubMed  Google Scholar 

  • Kubo T, Mikami T, Kinoshita T (1993) The sugar beet mitochondrial genome contains an ORF sharing sequence homology with the gene for the 30 kDa subunit of bovine mitochondrial complex I. Mol Gen Genet 241:479–481

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000a) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys (GCA). Nucleic Acids Res 28:2571–2576

    Article  CAS  Google Scholar 

  • Kubo T, Yamamoto MP, Mikami T (2000b) The nad4L-orf25 gene cluster is conserved and expressed in sugar beet mitochondria. Theor Appl Genet 100:214–220

    Article  CAS  Google Scholar 

  • Mower JP (2005) PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics 6:96

    Article  PubMed  Google Scholar 

  • Mundel C, Schuster W (1996) Loss of RNA editing of rps1 sequences in Oenothera mitochondria. Curr Genet 30:455–460

    Article  PubMed  CAS  Google Scholar 

  • Neuwirt J, Takenaka M, van der Merwe JA, Brennicke A (2005) An in vitro RNA editing system from cauliflower mitochondria: editing site recognition parameters can vary in different plant species. RNA 11:1563–1570

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Kubo T, Mikami T (2000) Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr Genet 37:34–38

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Oda K, Ohta E, Takemura M (1993) Gene organization and evolution of introns of a liverwort, Marchantia polymorpha, mitochondrial genome. In: Brennicke A, Kuck U (eds) Plant mitochondria. Verlag Chemie, Weinheim, pp 115–129

    Google Scholar 

  • Onodera Y, Yamamoto MP, Kubo T, Mikami T (1999) Heterogeneity of the atp6 presequences in normal and different sources of male-sterile cytoplasms of sugar beet. J Plant Physiol 155:656–660

    CAS  Google Scholar 

  • Quinones V, Zanlungo S, Moenne A, Gomez I, Holuigue L, Litvak S, Jordana X (1996) The rpl5-rps14-cob gene arrangement in Solanum tuberosum: rps14 is a transcribed and unedited pseudogene. Plant Mol Biol 31:937–943

    Article  PubMed  CAS  Google Scholar 

  • Sandoval P, Leon G, Gomez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T (2004) The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics 272:247–256

    Article  PubMed  CAS  Google Scholar 

  • Schuster W, Brennicke A (1991) RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera. Nucleic Acids Res 19:6923–6928

    Article  PubMed  CAS  Google Scholar 

  • Schuster W, Ternes R, Knoop V, Hiesel R, Wissinger B, Brennicke A (1991) Distribution of RNA editing sites in Oenothera mitochondrial mRNAs and rRNAs. Curr Genet 20:397–404

    Article  PubMed  CAS  Google Scholar 

  • Schuster W, Wissinger B, Unseld M, Brennicke A (1990) Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. EMBO J 9:263–269

    PubMed  CAS  Google Scholar 

  • Senda M, Mikami T, Kinoshita T (1993) The sugar beet mitochondrial gene for the ATPase alpha-subunit: sequence, transcription and rearrangements in cytoplasmic male-sterile plants. Curr Genet 24:164–170

    Article  PubMed  CAS  Google Scholar 

  • Siqueira SF, Dias SM, Hardouin P, Pereira FR, Lejeune B, de Souza AP (2002) Transcription of succinate dehydrogenase subunit 4 (sdh4) gene in potato: detection of extensive RNA editing and co-transcription with cytochrome oxidase subunit III (cox3) gene. Curr Genet 41:282–289

    Article  PubMed  CAS  Google Scholar 

  • Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48:303–312

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    Article  PubMed  CAS  Google Scholar 

  • Sunkel S, Brennicke A, Knoop V (1994) RNA editing of a conserved reading frame in plant mitochondria increases its similarity to two overlapping reading frames in Escherichia coli. Mol Gen Genet 242:65–72

    PubMed  CAS  Google Scholar 

  • Sutton CA, Conklin PL, Pruitt KD, Hanson MR (1991) Editing of pre-mRNAs can occur before cis- and trans-splicing in Petunia mitochondria. Mol Cell Biol 11:4274–4277

    PubMed  CAS  Google Scholar 

  • Thomson MC, Macfarlane JL, Beagley CT, Wolstenholme DR (1994) RNA editing of mat-r transcripts in maize and soybean increases similarity of the encoded protein to fungal and bryophyte group II intron maturases: evidence that mat-r encodes a functional protein. Nucleic Acids Res 22:5745–5752

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903

    Article  PubMed  CAS  Google Scholar 

  • Wilson RK, Hanson MR (1996) Preferential RNA editing at specific sites within transcripts of two plant mitochondrial genes does not depend on transcriptional context or nuclear genotype. Curr Genet 30:502–508

    Article  PubMed  CAS  Google Scholar 

  • Yang AJ, Mulligan RM (1991) RNA editing intermediates of cox2 transcripts in maize mitochondria. Mol Cell Biol 11:4278–4281

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the National Agricultural Research Center for Hokkaido Region (Hokkaido, Japan) for providing the seeds used in this study. This research was supported by NIH Grant R01-GM-70612 to JDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Mower.

Additional information

Communicated by R. Herrmann

Nucleotide sequence data generated for this study are available in the DDBJ/EMBL/GenBank databases under accession numbers DQ381444–DQ381465.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00438-006-0160-6

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mower, J.P., Palmer, J.D. Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris . Mol Genet Genomics 276, 285–293 (2006). https://doi.org/10.1007/s00438-006-0139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0139-3

Keywords

Navigation