Skip to main content
Log in

Functional analysis of the BIN2 genes of cotton

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Brassinosteroids (BR) promote the elongation of cotton fibers and may be a factor in determining their final length. To begin to understand the role of BR-mediated responses in the development of cotton fibers we have characterized the BIN2 genes of cotton. BIN2 is a member of the shaggy-like protein kinase family that has been identified as a negative regulator of BR signaling in Arabidopsis. Sequence analyses indicate that the tetraploid cotton genome includes four genes with strong sequence similarity to BIN2. These genes fall into two distinct subclasses based on sequence and expression patterns. Sequence comparisons with corresponding genes from cotton species that have the diploid A and D genomes, respectively, shows that each pair of genes comprises homeologs derived from the A and D sub-genomes. Transgenic Arabidopsis plants that express these cotton BIN2 cDNAs show reduced growth and similar phenotypes to the semi-dominant bin2 mutant plants. These results indicate that the cotton BIN2 genes encode functional BIN2 isoforms that can inhibit BR signaling. Further analyses of the function of BIN2 genes and their possible roles in determining fiber yield and quality are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–100

    Article  CAS  PubMed  Google Scholar 

  • Ashcraft CW (1996) The effect of brassinolide on cotton fiber development. MS Thesis, Texas Tech University

  • Beasley C, Ting IP (1974) The effect of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am J Bot 61:188–194

    CAS  Google Scholar 

  • Bourouis M, Moore P, Ruel L, Grau Y, Heitzler P, Simpson P (1990) An early embryonic product of the geneFrequencies of spontaneous base substitutions at the AatII target site in the chloroplast DNA of C. reinhardtii shaggy encodes a serine/threonine protein kinase related to the CDC28/cdc2+ subfamily. EMBO J 9:2877–2884

    CAS  PubMed  Google Scholar 

  • Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590

    Article  CAS  PubMed  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982

    Article  CAS  PubMed  Google Scholar 

  • Dornelas MC, Lejeune B, Dron M, Kreis M (1998) The Arabidopsis SHAGGY-related protein kinase (ASK) gene family: structure, organization and evolution. Gene 212:249–257

    Article  CAS  PubMed  Google Scholar 

  • Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    CAS  PubMed  Google Scholar 

  • Friedrichsen DM, Joazeiro CA, Li JM, Hunter T, Chory J (2000) Brassinosteroid-Insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1–19

    Article  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    CAS  PubMed  Google Scholar 

  • He JX, Gendron JM, Yang YL, Li JM, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a posiive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185–10190

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    CAS  Google Scholar 

  • Kasukabe Y, Iwara I, Maekawa Y (2000) Improvement of cotton fiber properties by genetic engineering. Sen-i Gakkaishi 56:99–103

    Article  Google Scholar 

  • Kim L, Kimmel AR (2000) GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr Opin Genet Dev 10:508–514

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    CAS  PubMed  Google Scholar 

  • Li JM, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, Bishop GJ (2002) Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14:3163–3176

    Article  CAS  PubMed  Google Scholar 

  • Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H., Chory, J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Gene Dev 18:448–460

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li JM (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li JM (2004) The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16:2406–2417

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Bishop GJ, Kaneta T, Reid JB, Chory J, Yokota T (2003) The LKA gene is a BRASSINOSTEROID INSENSITIVE 1 homolog of pea. Plant J 36:291–300

    Article  CAS  PubMed  Google Scholar 

  • Oh MH, Ray WK, Huber SC, Asara JM, Gage DA, Clouse SD (2000) Recombinant Brassinosteroid Insensitive 1 receptor-like kinase auto-phosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124:751–766

    Article  CAS  PubMed  Google Scholar 

  • Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213:716–721

    Article  CAS  PubMed  Google Scholar 

  • Strausberg R (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    Article  PubMed  Google Scholar 

  • Sun Y, Fokar M, Asami T, Yoshida S, Allen RD (2004) Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54:221–232

    Article  CAS  PubMed  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am J Bot 97:1291–1310

    Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1605

    Article  CAS  PubMed  Google Scholar 

  • Yin YH, Wang ZY, Mora-Garcia S, Li JM, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Peng P, Schmitz RJ, Decker AD, Tax FE, Li JM (2002) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol 130:1221–1229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms. Jing Wang for development of the cotton boll cDNA library. We also thank Dr. Jianming Li for providing us with the BIN2 cDNA sequence prior to publication. We also thank Dr. Robert Bradley for assistance with sequence alignments. This research was supported by USDA-NRI Grant No. 2003-35304-13384

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy D. Allen.

Additional information

G. Jürgens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Allen, R.D. Functional analysis of the BIN2 genes of cotton. Mol Genet Genomics 274, 51–59 (2005). https://doi.org/10.1007/s00438-005-1122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-1122-0

Keywords

Navigation