Skip to main content

Advertisement

Log in

Functional constraint and divergence in the G protein family in Caenorhabditis elegans and Caenorhabditis briggsae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Part of the challenge of the post-genomic world is to identify functional elements within the wide array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and functional conservation is not clear. Here, we use a comparative approach to examine questions of evolutionary rates and conserved function within the guanine nucleotide-binding protein (G protein) gene family in nematodes of the genus Caenorhabditis. In particular, we show that, in cases where the Caenorhabditis elegans ortholog shows a loss-of-function phenotype, G protein genes of C. elegans and Caenorhabditis briggsae diverge on average three times more slowly than G protein genes that do not exhibit any phenotype when mutated in C. elegans, suggesting that genes with loss of function phenotypes are subject to stronger selective constraints in relation to their function in both species. Our results also indicate that selection is as strong on G proteins involved in environmental perception as it is on those controlling other important processes. Finally, using phylogenetic footprinting, we identify a conserved non-coding motif present in multiple copies in the genomes of four species of Caenorhabditis. The presence of this motif in the same intron in the gpa-1 genes of C. elegans, C. briggsae and Caenorhabditis remanei suggests that it plays a role in the regulation of gpa-1, as well as other loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc Acids Res 25:3389–3402

    Google Scholar 

  • Bargmann C, Mori I (1997) Chemotaxis and thermotaxis. In: Riddle D, Blumenthal T, Meyer B, Priess J (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 717–737

    Google Scholar 

  • Berger A, Hart A, Kaplan J (1998) G alphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci 18:2871–2880

    Google Scholar 

  • Bierne N, Eyre-Walker A (2004) The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol 21:1350–1360

    Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Google Scholar 

  • Brundage L, Avery L, Katz A, Kim U, Mendel J, Sternberg P, Simon M (1996) Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 16:999–1009

    Google Scholar 

  • Chase DL, Patikoglou GA, Koelle MR (2001) Two RGS proteins that inhibit Gα(o) and Gα(q) signaling in C. elegans neurons require a Gβ(5)-like subunit for function. Curr Biol 11:222–231

    Google Scholar 

  • Chervitz SA, Aravind L, Sherlock G, Ball CA, Koonin EV, Dwight SS, Harris MA, Dolinski K, Mohr S, Smith T, Weng S, Cherry JM, Botstein D (1998) Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282:2022–2028

    Google Scholar 

  • Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L, Eggen A, Avner P, Duret L (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12:894–908

    Google Scholar 

  • Clapham D (1996) The G-protein nanomachine. Nature 379:297–299

    Google Scholar 

  • Cuppen E, van der Linden A, Jansen G, Plasterk R (2003) Proteins interacting with Caenorhabditis elegans Galpha subunits. Comp Funct Genomics 4:479–491

    Google Scholar 

  • Cutter A, Payseur B, Salcedo T, Estes A, Good J, Wood E, Hartl T, Maughan H, Strempel J, Wang B, Bryan A, Dellos M (2003) Molecular correlates of genes exhibiting RNAi phenotypes in Caenorhabditis elegans. Genome Res 13:2651–2657

    Google Scholar 

  • Daniels S, Ailion M, Thomas J, Sengupta P (2000) egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics 156:123–141

    Google Scholar 

  • Dermitzakis E, Reymond A, Lyle R, Scamuffa N, Ucla C, Deutsch S, Stevenson B, Flegel V, Bucher P, Jongeneel C, Antonarakis S (2002) Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420:578–582

    Google Scholar 

  • Dunn K, Bielawski J, Yang Z (2001) Substitution rates in Drosophila nuclear genes: implications for translational selection. Genetics 157:295–305

    Google Scholar 

  • Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17:68–74

    Google Scholar 

  • Fay JC, Wyckoff GJ, Wu CI (2001) Positive and negative selection on the human genome. Genetics 158:1227–1234

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Frazer K, Sheehan J, Stokowski R, Chen X, Hosseini R, Cheng J, Fodor S, Cox D, Patil N (2001) Evolutionarily conserved sequences on human chromosome 21. Genome Res 11:1651–1659

    Google Scholar 

  • Frazer K, Tao H, Osoegawa K, de Jong P, Chen X, Doherty M, Cox D (2004) Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res 14:367–372

    Google Scholar 

  • Glew L, Lo R, Reece T, Nichols M, Soll D, Bell J (1986) The nucleotide sequence, localization and transcriptional properties of a tRNALeuCUG gene from Drosophila melanogaster. Gene 44:307–314

    Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    Google Scholar 

  • Gotta M, Ahringer J (2001) Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol 3:297–300

    Google Scholar 

  • Göttgens B, Barton L, Gilbert J, Bench A, Sanchez M, Bahn S, Mistry S, Grafham D, McMurray A, Vaudin M, Amaya E, Bentley D, Green A, Sinclair A (2000) Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnol 18:181–186

    Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Series 41:95–98

    Google Scholar 

  • Hare M, Palumbi S (2003) High intron sequence conservation across three mammalian orders suggests functional constraints. Mol Biol Evol 20:969–978

    Google Scholar 

  • Hirsh A, Fraser H (2001) Protein dispensability and rate of evolution. Nature 411:1046–1049

    Google Scholar 

  • Hurst L, Smith N (1999) Do essential genes evolve slowly? Curr Biol 9:747–750

    Google Scholar 

  • Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH (1999) The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet 21:414–419

    Google Scholar 

  • Jansen G, Weinkove D, Plasterk R (2002) The G-protein gamma subunit gpc-1 of the nematode C. elegans is involved in taste adaptation. EMBO J 21:986–994

    Google Scholar 

  • Jiang L, Sternberg P (1999) An HMG1-like protein facilitates Wnt signaling in Caenorhabditis elegans. Genes Dev 13:877–889

    Google Scholar 

  • Jovelin R, Ajie BC, Phillips PC (2003) Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis. Mol Ecol 12:1325–1337

    Google Scholar 

  • Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro H (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  • Jukes TH, Osawa S (1993) Evolutionary changes in the genetic code. Comp Biochem Phys B 106:489–494

    Google Scholar 

  • Kennedy BP, Aamodt EJ, Allen FL, Chung MA, Heschl MF, McGhee JD (1993) The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Biol 229:890–908

    Google Scholar 

  • Korswagen H, Park J, Ohshima Y, Plasterk R (1997) An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev 11:1493–1503

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen I, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Google Scholar 

  • Lackner MR, Nurrish SJ, Kaplan JM (1999) Facilitation of synaptic transmission by EGL-30 Gqα and EGL-8 PLCβ:DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24:335–346

    Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Lans H, Rademakers S, Jansen G (2004) A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167:1677–1687

    Google Scholar 

  • Liu KS, Sternberg PW (1995) Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 14:79–89

    Google Scholar 

  • Loots G, Locksley R, Blankespoor C, Wang Z, Miller W, Rubin E, Frazer K (2000) Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288:136–140

    Google Scholar 

  • Lowe T, Eddy S (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Google Scholar 

  • Mendel J, Korswagen H, Liu K, Hajdu-Cronin Y, Simon M, Plasterk R, Sternberg P (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267:1652–1655

    Google Scholar 

  • Milanesi L, D’Angelo D, Rogozin IB (1999) GeneBuilder: interactive in silico prediction of gene structure. Bioinformatics 15:612–621

    Google Scholar 

  • Moghal N, Garcia L, Khan L, Iwasaki K, Sternberg P (2003) Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Galphaq and excitable cells in C. elegans. Development 130:4553–4566

    Google Scholar 

  • Nathoo A, Moeller R, Westlund B, Hart A (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98:14000–14005

    Google Scholar 

  • Neer E (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80:249–257

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    Google Scholar 

  • Nurrish S, Ségalat L, Kaplan J (1999) Serotonin inhibition of synaptic transmission: Gα(0) decreases the abundance of UNC-13 at release sites. Neuron 24:231–242

    Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    Google Scholar 

  • Park J, Ohshima S, Tani T, Ohshima Y (1997) Structure and expression of the gsa-1 gene encoding a G protein alpha(s) subunit in C. elegans. Gene 194:183–190

    Google Scholar 

  • Riddle D, Albert P (1997) Genetic and environmental regulation of dauer larva development. In: Riddle D, Blumenthal T, Meyer B, Priess J (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 739–768

    Google Scholar 

  • Roayaie K, Crump JG, Sagasti A, Bargmann CI (1998) The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20:55–67

    Google Scholar 

  • Robertson HM (1998) Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 8:449–463

    Google Scholar 

  • Robertson HM (2000) The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res 10:192–203

    Google Scholar 

  • Schulze E, Altmann M, Adham I, Schulze B, Frode S, Engel W (2003) The maintenance of neuromuscular function requires UBC-25 in Caenorhabditis elegans. Biochem Biophys Res Comm 305:691–699

    Google Scholar 

  • Ségalat L, Elkes D, Kaplan J (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267:1648–1651

    Google Scholar 

  • Shabalina SA, Kondrashov AS (1999) Pattern of selective constraint in C. elegans and C. briggsae genomes. Genetical Res 74:23–30

    Google Scholar 

  • Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024

    Google Scholar 

  • Stein L et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:166–192

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • Thomas J et al (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424:788–793

    Google Scholar 

  • Troemel ER (1999) Chemosensory signaling in C. elegans. Bioessays 21:1011–1020

    Google Scholar 

  • Van der Linden AM, Simmer F, Cuppen E, Plasterk RH (2001) The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics 158:221–235

    Google Scholar 

  • Van der Linden A, Moorman C, Cuppen E, Korswagen H, Plasterk R (2003) Hyperactivation of the G12-mediated signaling pathway in Caenorhabditis elegans induces a developmental growth arrest via protein kinase C. Curr Biol 13:516–521

    Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Google Scholar 

  • Wilson A, Carlson S, White T (1977) Biochemical evolution. Annu Rev Biochem46:573–639

    Google Scholar 

  • Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:407

    Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comp Appl Biosci 13:555–556

    Google Scholar 

  • Yau DM, Yokoyama N, Goshima Y, Siddiqui ZK, Siddiqui SS, Kozasa T (2003) Identification and molecular characterization of the Gα12-ρguanine nucleotide exchange factor pathway in Caenorhabditis elegans. Proc Natl Acad Sci USA 100:14748–14753

    Google Scholar 

  • Zdobnov EM et al (2002) Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298:149–159

    Google Scholar 

  • Zwaal R, Broeks A, van Meurs J, Groenen J, Plasterk R (1993) Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci USA 90:7431–7435

    Google Scholar 

  • Zwaal R, Ahringer J, van Luenen H, Rushforth A, Anderson P, Plasterk R (1996) G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell 86:619–629

    Google Scholar 

  • Zwaal R, Mendel J, Sternberg P, Plasterk R (1997) Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. Genetics 145:715–727

    Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center, which is supported by the National Institutes of Health National Center for Research Resources, for providing us with some of the strains used in this study. Scott Baird provided C. remanei strain PB269 and Joe Thornton provided help with the analysis. We also thank the Sanger Institute and the Genome Sequencing Center at Washington University, St Louis for releasing the unpublished C. briggsae genome sequence and providing the research community with this tremendous resource. Finally, we thank the reviewers for their valuable comments. This work was supported by a grant from the National Institutes of Health (GM54185)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Phillips.

Additional information

Communicated by S. Hekimi

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovelin, R., Phillips, P.C. Functional constraint and divergence in the G protein family in Caenorhabditis elegans and Caenorhabditis briggsae. Mol Genet Genomics 273, 299–310 (2005). https://doi.org/10.1007/s00438-004-1105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1105-6

Keywords

Navigation