Skip to main content
Log in

Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Transport of nucleotide-sugars across the Golgi membrane is required for the lumenal synthesis of a variety of essential cell surface components, and is mediated by nucleotide sugar transporters (NSTs) which are members of the large drug/metabolite superfamily of transporters. Despite the importance of these proteins in plants, so far only two have been described, GONST1 and AtUTr1 from Arabidopsis thaliana. In this work, our aim was to identify further Golgi nucleotide-sugar transporters from Arabidopsis. On the basis of their sequence similarity to GONST1, we found four additional proteins, which we named GONST2, 3, 4 and 5. These putative NSTs were grouped into three clades: GONST2 with GONST1; GONST3 with GONST4; and GONST5 with six further uncharacterized proteins. Transient expression in tobacco cells of a member of each clade, fused to the Green Fluorescent Protein (GFP), suggested that all these putative NSTs are localised in the Golgi. To obtain evidence for nucleotide sugar transport activity, we expressed these proteins, together with the previously characterised GONST1, in a GDP-mannose transport-defective yeast mutant ( vrg4-2). We tested the transformants for rescue of two phenotypes associated with this mutation: sensitivity to hygromycin B and reduced glycosylation of extracellular chitinase. GONST1 and GONST2 complemented both phenotypes, indicating that GONST2, like the previously characterized GONST1, is a GDP-mannose transporter. GONST3, 4 and 5 also rescued the antibiotic sensitivity, but not the chitinase glycosylation defect, suggesting that they can also transport GDP-mannose across the yeast Golgi membrane but with a lower efficiency. RT-PCR and analysis of Affymetrix data revealed partially overlapping patterns of expression of GONST1–5 in a variety of organs. Because of the differences in ability to rescue the vrg4 -2 phenotype, and the different expression patterns in plant organs, we speculate that GONST1 and GONST2 are both GDP-mannose transporters, whereas GONST3, GONST4 and GONST5 may transport other nucleotide-sugars in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–i
Fig. 4a–f
Fig. 5
Fig. 6a–d
Fig. 7a, b

Similar content being viewed by others

References

  • Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K, Hirschberg CB, Robbins PW (1993) Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122:307–323

    Article  CAS  PubMed  Google Scholar 

  • Agatep R, Kirkpatrick RD, Parchaliuk DL, Woods RA, Gietz RD (1998) Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol protocol. Technical Tips Online (http://tto.tends.com)

  • Baldwin TC, Handford MG, Yuseff M-I, Orellana A, Dupree P (2001) Identification and characterization of GONST1, a Golgi-localized GDP-mannose transporter in Arabidopsis. Plant Cell 13:2283–2295

    Article  CAS  PubMed  Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218

    Article  CAS  PubMed  Google Scholar 

  • Berninsone P, Eckhardt M, Gerardy-Schahn R, Hirschberg CB (1997) Functional expression of the murine Golgi CMP-sialic acid transporter in Saccharomyces cerevisiae. J Biol Chem 272:12616–12619

    Article  CAS  PubMed  Google Scholar 

  • Berninsone P, Hwang H-Y, Zemtseva I, Horvitz HR, Hirschberg CB (2001) SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP- N -acetylgalactosamine and UDP-galactose. Proc Natl Acad Sci USA 98:3738–3743

    Article  CAS  PubMed  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betterdge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  • Bonin CP, Potter I, Vanzin GF, Reiter W-D (1997) The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci USA 94:2085–2090

    Article  CAS  PubMed  Google Scholar 

  • Brandizzi F, Snapp E L, Roberts AG, Lippincott-Schwartz J, C. Hawes (2002a) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309

    Article  CAS  PubMed  Google Scholar 

  • Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N (2002b) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14:1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Brusslan JA, Tobin EM (1992) Light-independent developmental regulation of CAB gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci USA 89:7791–7795

    CAS  PubMed  Google Scholar 

  • Burget EG, Verma R, Mølhøj M, Reiter W-D (2003) The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Capasso JM, Hirschberg CB (1984) Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide-sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane. Proc Natl Acad Sci USA 81:7051–7055

    CAS  PubMed  Google Scholar 

  • Coates SW, Gurney TJ, Sommers LW, Yeh M, Hirschberg CB (1980) Subcellular localization of sugar nucleotide synthetases. J Biol Chem 255:9225–9229

    CAS  PubMed  Google Scholar 

  • Dean N (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci USA 92:1287–1291

    CAS  PubMed  Google Scholar 

  • Dean N, Zhang YB, Poster JB (1997) The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J Biol Chem 272:31908–31914

    Article  CAS  PubMed  Google Scholar 

  • Descoteaux A, Luo Y, Turco SJ, Beverley SM (1995) A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 269:1869–1872

    CAS  PubMed  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  CAS  PubMed  Google Scholar 

  • Gao XD, Dean N (2000) Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J Biol Chem 275:17718–17727

    Article  CAS  PubMed  Google Scholar 

  • Gao XD, Nishikawa A, Dean N (2001) Identification of a conserved motif in the yeast Golgi GDP-mannose transporter required for binding to nucleotide-sugar. J Biol Chem 276:4424–4432

    Article  CAS  PubMed  Google Scholar 

  • Gerardy-Schahn R, Oelmann S, Bakker H (2001) Nucleotide-sugar transporters: biological and functional aspects. Biochimie 83:775–782

    Article  CAS  PubMed  Google Scholar 

  • Gibeaut DM (2000) Nucleotide-sugars and glycosyltransferases for synthesis of cell wall matrix polysaccharides. Plant Physiol Biochem 38:69–80

    Article  CAS  Google Scholar 

  • Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P (2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta, in press

  • Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS , encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130:2188–2198

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Herman T, Horvitz HR (1999) Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proc Natl Acad Sci USA 96:974–979

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide-sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67:49–69

    Article  CAS  PubMed  Google Scholar 

  • Hong K, Ma D, Beverley SM, Turco SJ (2000) The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry 39:2013–2022

    Article  CAS  PubMed  Google Scholar 

  • Jack DL, Nelson MY, Saier MH Jr (2001) The drug/metabolite transport superfamily. Eur J Biochem 268:3620–3639

    Article  CAS  PubMed  Google Scholar 

  • Keegstra K, Raikhel N (2001) Plant glycosyltransferases. Curr Opin Plant Biol 4:219–224

    Article  CAS  PubMed  Google Scholar 

  • Knappe S, Flügge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorder of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28:73–76

    Article  PubMed  Google Scholar 

  • Ma D, Russell DG, Beverley SM, Turco SJ (1997) Golgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters. J Biol Chem 272:3799-3805

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Duncker I, Mollicone R, Codogno P, Oriol R (2003) The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie 85:245–260

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa A, Mendez A, Jigami Y, Dean N (2002a) Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter. Yeast 19:691–698

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa A, Poster JB, Jigami Y, Dean N (2002b) Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J Bacteriol 184:29–42

    Article  CAS  PubMed  Google Scholar 

  • Norambuena L, Marchant L, Berninsone P, Hirschberg CB, Silva H, Orellana A (2002) Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactose/UDP-glucose transporter. J Biol Chem 277:32923–32929

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins D, Heringa J (2000) T-Coffee: A novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Poster JB, Dean N (1996) The yeast VRG4 gene is required for normal Golgi functions and defines a new family of related genes. J Biol Chem 271:3837–3845

    Article  CAS  PubMed  Google Scholar 

  • Prime TA, Sherrier JD, Mahon P, Packman LC, Dupree P (2000) A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis 21:3488–3499

    Article  CAS  PubMed  Google Scholar 

  • Reiter W-D, Vanzin GF (2001) Molecular genetics of nucleotide-sugar interconversion pathways in plants. Plant Mol Biol 47:95–113

    Article  CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143

    Article  CAS  PubMed  Google Scholar 

  • Segawa H, Kawakita M, Ishida N (2002) Human and Drosophila UDP-galacose transporters transport UDP- N -acetylgalactosamine in addition to UDP-galactose. Eur J Biochem 269:128–138

    Article  CAS  PubMed  Google Scholar 

  • Seifert GJ, Barber C, Wells B, Dolan L, Roberts K (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr Biol 12:1840–1845

    Article  CAS  PubMed  Google Scholar 

  • Shannon JC, Pien FM, Cao HP, Liu KC (1998) Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol 117:1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  CAS  PubMed  Google Scholar 

  • Sterling JD, Quigley HF, Orellana A, Mohnen D (2001) The catalytic site of the pectin biosynthesis enzyme α-1,4-galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol 127:360–371

    Article  CAS  PubMed  Google Scholar 

  • The Arabidosis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Wagh PV, Bahl OP (1981) Sugar residues on proteins. Crit Rev Biochem 10:307–377

    CAS  Google Scholar 

  • Wee EG-T, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Wulff C, Norambuena L, Orellana A (2000) GDP-fucose uptake into the Golgi apparatus during xyloglucan biosynthesis requires the activity of a transporter-like protein other than the UDP-glucose transporter. Plant Physiol 122:867–877

    Article  CAS  PubMed  Google Scholar 

  • Zablackis E, York WS, Pauly M, Hantus S, Reiter W-D, Chapple CC, Albersheim P, Darvill A (1996) Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1. Science 272:1808–1810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ariel Orellana for advice on the chitinase studies and for helpful discussions, and Chris Barton for contributing to the Affymetrix analysis. The Biotechnology and Biological Sciences Research Council supported this research. M.G.H. was the recipient of a Broodbank Trust Fellowship; F.S. was supported by the Institute Pasteur-Fondazione Cenci Bolognetti and F.B. was the recipient of a Canadian Research Chair Grant

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dupree.

Additional information

Communicated by G. Jürgens

The first two authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handford, M.G., Sicilia, F., Brandizzi, F. et al. Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Mol Genet Genomics 272, 397–410 (2004). https://doi.org/10.1007/s00438-004-1071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1071-z

Keywords

Navigation