Skip to main content
Log in

Comparative mapping between Medicago sativa and Pisum sativum

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acarkan A, Rossberg M, Koch M, Schmidt R (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J 23:55–62

    Article  CAS  PubMed  Google Scholar 

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G (1993) Silver staining of DNA in polyacryamide gels. Appl Biochem and Biotech 42:181–188

    CAS  Google Scholar 

  • Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z (1998) Grass genomes. Proc Natl Acad Sci USA 95:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Boivin K, Acarkan A, Mbulu RS, Clarenz O, Schmidt R (2004) The Arabidopsis genome sequence as a tool for the genome analysis in Brassicaceae. A comparison of the Arabidopsis and the Capsella rubella genomes. Plant Phys 135:735–744

    Article  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    Google Scholar 

  • Boutin SR, Young ND, Olsen TC, Yu ZH, Shoemaker RC, Vallejos CE (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937

    CAS  Google Scholar 

  • Brouwer DJ, Osborn TC (1999) A molecular marker linkage map of tetraploid alfalfa ( Medicago sativa L.). Theor Appl Genet 99:1194–1200

    Article  CAS  Google Scholar 

  • Brummer EC, Kochert G, Bouton JH (1991) RFLP variation in diploid and tetraploid alfalfa. Theor Appl Genet 83:89–96

    Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    CAS  Google Scholar 

  • Chang MM, Culley DE, Hadwiger LA (1993) Nucleotide sequence of a pea Pisum sativum L. beta-1,3-glucanase gene. Plant Phys 101:1121–1122

    Article  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun J, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics 166:1463–1502

    Google Scholar 

  • Choi HK, Kim D, Zhu H, Mun J, Baek J, Roe BA, Ellis THN, Young ND, Doyle J, Kiss GB, Cook DR (2004b) Conserved gene order between crop and model legume species. Proc Natl Acad Sci USA (in press)

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    Article  CAS  PubMed  Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1994) Linkage mapping in diploid alfalfa ( Medicago sativa). Genome 37:61–71

    CAS  PubMed  Google Scholar 

  • Ehrlich J, Sankoff D, Nadeau JH (1997) Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289–296

    CAS  PubMed  Google Scholar 

  • Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytologist 153:17–25

    Article  CAS  Google Scholar 

  • Ellis THN, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney C, Davies DR (1992) Linkage maps in pea. Genetics 130:649–663

    CAS  PubMed  Google Scholar 

  • Endre G, Kaló P, Kevei Z, Kiss P, Mihacea S, Szakál B, Kereszt A, Kiss GB (2002a) Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa Medicago sativa Mol Gen Genet 266:1012–1019

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002b) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD (1991) RFLP maps of potato and their alignment with the homologous tomato genome. Theor Appl Genet 83:49–57

    Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1997) A linkage map of the pea Pisum sativum L. genome containing cloned sequences of known function and expressed tags ESTs. Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  • Gowri G, Paiva NL, Dixon RA (1991) Stress responses in alfalfa Medicago sativa L. 12. Sequence analyses of phenylalanine ammonia-lyase PAL cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants. Plant Mol Biol 17:415–429

    Google Scholar 

  • Györgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16:999–1007

    PubMed  Google Scholar 

  • Hall KJ, Parker JS, Ellis THN, Turner L, Knox MR, Hofer JMI, Lu J, Ferrandiz C, Hunter PJ, Taylor JD, Baird K (1997) The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 40:755–769

    CAS  Google Scholar 

  • Harker CL, Ellis THN, Coen ES (1990) Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Hofer JMI, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis THN (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  CAS  PubMed  Google Scholar 

  • Humphry ME, Konduri V, Lambrides CJ, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2002) Development of a mungbean ( Vigna radiata) RFLP linkage map and its comparison with lablab ( Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet 105:160–166

    Article  CAS  PubMed  Google Scholar 

  • Irzykowska L, Wolko B, Swiecicki WK (2001) The genetic linkage map of pea Pisum sativum L. based on molecular, biochemical and morphological markers. Pisum Genet 33:13–18

    Google Scholar 

  • Kaló P, Endre G, Zimányi L, Csanádi G, Kiss GB (2000) Construction of an improved linkage map diploid alfalfa Medicago sativa. Theor Appl Genet 100:641–657

    Article  Google Scholar 

  • Kaló P, Felföldi K, Seres A, Endre G, Kiss GB (2003) Genetic mapping of seed and nodule protein markers in diploid alfalfa ( Medicago sativa), In: Nagata, Tabata (eds) Biotechnology in agriculture and forestry: Brassicas and Legumes. Springer-Verlag Berlin, Heidelberg. Vol. 52 pp. 228–244

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  CAS  PubMed  Google Scholar 

  • Kiss GB, Csanádi G, Kálmán K, Kaló P, Ökrész L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137

    CAS  PubMed  Google Scholar 

  • Kiss GB, Kereszt A, Kiss P, Endre G (1998) Colormapping:a non-mathematical procedure for genetic mapping. Acta Biol Hun 49:125–142

    CAS  Google Scholar 

  • Kopriva S, Turner SR, Rawsthorne S, Bauwe H (1995) T-protein of the glycine decarboxylase multienzyme complex:evidence for partial similarity to formyltetrahydrofolate synthetase. Plant Mol Biol 27:1215–1220

    CAS  PubMed  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    CAS  PubMed  Google Scholar 

  • Llewellyn DJ, Finnegan EJ, Ellis JG, Dennis ES, Peacock WJ (1987) Structure and expression of an alcohol dehydrogenase 1 gene from Pisum sativum (cv. “Greenfeast”). J Mol Biol 195:115–123

    CAS  PubMed  Google Scholar 

  • Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372

    CAS  PubMed  Google Scholar 

  • Macherel D, Bourguignon J, Douce R (1992) Cloning of the gene gdcH encoding H-protein, a component of the glycine decarboxylase complex of pea Pisum sativum L. Biochem J 286:627–630

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean ( Vigna radiata (L.) Wilczek) and cowpea ( V. unguiculata (L.) Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810

    CAS  Google Scholar 

  • Navratilova A, Neumann P, Macas J (2003) Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann Botany 91:921–926

    Article  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    CAS  PubMed  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kruiper M, Lydiate DJ, Trick M (1997) Comparison of flowering genes in Brassica rapa, Brassica napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    Article  CAS  PubMed  Google Scholar 

  • Sankoff D (2001) Gene and genome duplication. Curr Op Genet Dev 11:681–684

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Walker SA, Poyser S, Sagan M, Ellis THN, Downie JA (1999) Genetic mapping and functional analysis of a nodulation defective mutant sym19 of pea Pisum sativum L. Mol Gen Genet 262:1–11

    Article  CAS  PubMed  Google Scholar 

  • Simon CJ, FJ Muehlbauer (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    CAS  Google Scholar 

  • Sorefan K, Booker J, Haurogné K, Goussot M, Foo E Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenases-like genes that regulate shoot branching in Arabidopsis and pea. Genes and Dev 17:1469–1474

    Article  CAS  PubMed  Google Scholar 

  • Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18s-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9

    Article  CAS  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pined O, Röder MS, Wing RA, Wu W, Young ND (1992) High density molecular map linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Taylor SA, Hofer JMI, Murfet IC, Sollinger JD, Singer SR, Knox MR, Ellis THN (2002 PROLIFERATING INFLORESCENCE MERISTEM, a MADS-Box gene that regulates floral meristem identity in pea. Plant Phys 129:1150–1159

    Article  CAS  Google Scholar 

  • Turner SR, Ireland R, Rawsthorne S (1992a) Purification and primary amino-acid sequence of the L subunit of glycine decarboxylase. J Biol Chem 267:7745–7750

    CAS  PubMed  Google Scholar 

  • Turner SR, Ireland R, Rawsthorne S (1992b) Cloning and characterization of the P subunit of the glycine decarboxylase from pea Pisum sativum. J Biol Chem 267:5355–5360

    CAS  PubMed  Google Scholar 

  • Turner L, Hellens RP, Lee D, Ellis THN (1993) Genetic aspects of the organization of legumin genes in pea. Plant Mol Biol 22:101–112

    CAS  PubMed  Google Scholar 

  • Vavilov NI (1922) The law of homologous series in variation. J Genetics 12:47–88

    Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR, Ambrose MJ, Ellis THN (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution and domestication. Mol Biol Evol 20:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, MR Knox, THN Ellis, P Kaló, GB Kiss, Brewin NJ (2000) Nodule-expressed Cyp15a cysteine protease genes map to syntenic genome regions in Pisum and Medicago spp. Mol Plant Microbe Int 13:715–723

    CAS  Google Scholar 

  • Weeden NF, Marx GA (1987) Further genetic analysis and linkage relationships of isozyme loci in the pea. J Hered 78:153–159

    Google Scholar 

  • Weeden NF, Muehlbauer FJ, Ladizinsky G (1992) Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83:123–129

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Skwiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  • Weeden NF, Tonguc M, Boone WE (1999) Mapping coding sequences in pea by PCR. Pisum Genet 31:30–32

    Google Scholar 

Download references

Acknowledgements

We would like to thank K. Karchesz, C. Ernhoffer, P. Somkúti, S. Jenei, Z. Liptay for skillful technical assistance; P. Kiss for help in mapping EuDicot gene-specific loci ( GAPDH, HSP70 , RPL17 , RPL32 , RPS9 , RPSA40 and UCE), Á. Dalmadi and S. Stranczinger for their help during the mapping of Uni, and PscDNA clones in alfalfa. The authors thank Michel Delseny for useful discussions. This work was supported by the ABC Gödöllő, the BRC Szeged, and the Bástyai-Holczer Foundation, and by grants from the EU EuDicotMap (Grant No. BIO 4CT97-2170; EU), and MEDICAGO (Grant No. QLG2-CT-2000-30676; EU), and by the Hungarian National Grants OMFB EU-97-D8-063 (National Committee for Technical Development), NKFP Medicago Genomics (Grant No. 4/023/2001-Ministry of Education) and Biotechnology 2001 (Grant No. OMFD-00229/2002), OTKA (Grant No.T038211). P. Kaló, A. Kereszt and G. Endre were supported by János Bolyai postdoctoral fellowships

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kiss.

Additional information

Communicated by W. R. McCombie

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaló, P., Seres, A., Taylor, S.A. et al. Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272, 235–246 (2004). https://doi.org/10.1007/s00438-004-1055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1055-z

Keywords

Navigation