Skip to main content
Log in

Genetic interactions between an RNA polymerase II phosphatase and centromeric elements in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The Saccharomyces cerevisiase protein phosphatase Fcp1 has been implicated in the regulation of transcription by RNA polymerase II, and is encoded by the essential gene FCP1. A screen was carried out for multicopy suppressors of the temperature-sensitive phenotype of two phosphatase mutants, fcp1-2 and fcp1-4. Only the wild-type FCP1 was found to suppress (complement) the fcp1-4 mutation. For fcp1-2 three second-site suppressors were identified. One contained the ORF for ZDS1. The remaining two suppressors mapped to the centromere regions of chromosomes I and V. Suppression due to centromere DNA was found to be more dependent on the CDEIII region than on other regions of the centromere. The presence of a suppressor centromere affected the level of Fcp1 protein and the overall phosphorylation state of RNA polymerase II (RNAPII) in fcp1-2 cells, but not wild-type cells, grown at both permissive and non-permissive temperatures. In addition, genetic interactions were identified between this FCP1 mutant and the genes SKP1, CEP3 and CBF1, which code for centromere binding proteins. The mechanism of suppression and regulation of Fcp1-2 protein activity by centromeric DNA is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A, B
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B

Similar content being viewed by others

References

  • Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD (1998) BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 19:254–256

    CAS  PubMed  Google Scholar 

  • Archambault J, Chambers RS, Kobor MS, Ho Y, Cartier M, Bolotin D, Andrews B, Kane CM, Greenblatt J (1997) An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:14300–14305

    Article  CAS  PubMed  Google Scholar 

  • Archambault J, Pan G, Dahmus GK, Cartier M, Marshall N, Zhang S, Dahmus ME, Greenblatt J (1998) FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J Biol Chem 273:27593–27601

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (1993) Current protocols in molecular biology. Wiley, New York

  • Baker RE, Masison DC (1990) Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol Cell Biol 10:2458–2467

    CAS  PubMed  Google Scholar 

  • Baskaran R, Dahmus ME, Wang JY (1993) Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc Natl Acad Sci USA 90:11167–11171

    CAS  PubMed  Google Scholar 

  • Baskaran R, Escobar SR, and Wang JY (1999) Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation. Cell Growth Differ 10:387–396

    CAS  PubMed  Google Scholar 

  • Bi E, Pringle JR (1996) ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae. Mol Cell Biol 16:5264–5275

    CAS  PubMed  Google Scholar 

  • Blaiseau PL, Thomas D (1998) Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA. EMBO J 17:6327–6336

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11:68–76

    CAS  PubMed  Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154

    CAS  PubMed  Google Scholar 

  • Chambers RS, Dahmus ME (1994) Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J Biol Chem 269:26243–26248

    CAS  PubMed  Google Scholar 

  • Chambers RS, Wang BQ, Burton ZF, Dahmus ME (1995) The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. J Biol Chem 270:14962–14969

    Article  CAS  PubMed  Google Scholar 

  • Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15:3319–3329

    Article  CAS  PubMed  Google Scholar 

  • Clarke L (1998) Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev 8:212–218

    Google Scholar 

  • Connelly C, Hieter P (1996) Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86:275–285

    CAS  PubMed  Google Scholar 

  • Costa PJ, Arndt KM (2000) Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics 156:535–547

    CAS  PubMed  Google Scholar 

  • Cross FR (1997) ‘Marker swap’ plasmids: convenient tools for budding yeast molecular genetics. Yeast 13:647–653

    Article  CAS  PubMed  Google Scholar 

  • Dvir A, Conaway JW, Conaway RC (2001) Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr Opin Genet Dev 11:209–214

    CAS  PubMed  Google Scholar 

  • Fath S, Kobor MS, Philippi A, Greenblatt J, Tschochner H (2004) Dephosphorylation of RNA polymerase I by Fcp1p is required for efficient rRNA synthesis. J Biol Chem (in press)

  • Foiani M, Marini F, Gamba D, Lucchini G, Plevani P (1994) The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol Cell Biol 14:923–933

    CAS  PubMed  Google Scholar 

  • Fong N, Bentley DL (2001) Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev 15:1783–1795

    Article  CAS  PubMed  Google Scholar 

  • Friedl EM, Lane WS, Erdjument-Bromage H, Tempst P, Reinberg D (2003) The C-terminal domain phosphatase and transcription elongation activities of FCP1 are regulated by phosphorylation. Proc Natl Acad Sci USA 100:2328–2333

    Article  CAS  PubMed  Google Scholar 

  • Futcher B, Carbon J (1986) Toxic effects of excess cloned centromeres. Mol Cell Biol 6:2213–2222

    CAS  PubMed  Google Scholar 

  • Griffioen G, Branduardi P, Ballarini A, Anghileri P, Norbeck J, Baroni MD, Ruis H (2001) Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol Cell Biol 21:511–523

    CAS  PubMed  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology Academic Press: San Diego

    Google Scholar 

  • Hani J, Schelbert B, Bernhardt A, Domdey H, Fischer G, Wiebauer K, Rahfeld JU (1999) Mutations in a peptidylprolyl- cis/trans -isomerase gene lead to a defect in 3′-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem 274:108–116

    Article  CAS  PubMed  Google Scholar 

  • Hausmann S, Shuman S (2002) Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J Biol Chem 277:21213–21220

    Article  CAS  PubMed  Google Scholar 

  • Hemmerich P, Stoyan T, Wieland G, Koch M, Lechner J, Diekmann S (2000) Interaction of yeast kinetochore proteins with centromere-protein/transcription factor Cbf1. Proc Natl Acad Sci USA 97:12583–12588

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Donald KA, Griffiths DE, Donald G (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791

    CAS  PubMed  Google Scholar 

  • Hirose Y, Tacke R, Manley JL (1999) Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 13:1234–1239

    CAS  PubMed  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    CAS  PubMed  Google Scholar 

  • Kimura M, Suzuki H, Ishihama A (2002) Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol Cell Biol 22:1577–1588

    Article  CAS  PubMed  Google Scholar 

  • Kobor MS, Greenblatt J (2002) Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 1577:261–275

    Article  CAS  PubMed  Google Scholar 

  • Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O, Jansma DB, Jennings EG, Kouyoumdjian F, Davidson AR, Young RA, Greenblatt J (1999) An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 4:55–62

    CAS  PubMed  Google Scholar 

  • Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J (2000) A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol Cell Biol 20:7438–7449

    Article  CAS  PubMed  Google Scholar 

  • Lin PS, Marshall NF, Dahmus ME (2002) CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. Prog Nucleic Acid Res Mol Biol 72:333–365

    CAS  PubMed  Google Scholar 

  • Lindstrom DL, Squazzo SL, Muster N, Burckin TA, Wachter KC, Emigh CA, McCleery JA, Yates JR, 3rd, and Hartzog GA (2003) Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23:1368–1378

    Article  CAS  PubMed  Google Scholar 

  • Mandal SS, Cho H, Kim S, Cabane K, Reinberg D (2002) FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol Cell Biol 22:7543–7552

    Article  CAS  PubMed  Google Scholar 

  • Manke IA, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639

    Article  CAS  PubMed  Google Scholar 

  • Mellor J, Jiang W, Funk M, Rathjen J, Barnes CA, Hinz T, Hegemann JH, Philippsen P (1990) CPF1, a yeast protein which functions in centromeres and promoters. EMBO J 9:4017–4026

    CAS  PubMed  Google Scholar 

  • Morris DP, Greenleaf AL (2000) The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275:39935–39943

    Article  CAS  PubMed  Google Scholar 

  • Morris DP, Phatnani HP, Greenleaf AL (1999) Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3′-end formation. J Biol Chem 274:31583–31587

    Article  CAS  PubMed  Google Scholar 

  • Oechsner U, Bandlow W (1998) Growth-regulated formation of heteromeric complexes of the centromere and promoter factor, Cbf1p, in yeast. Mol Gen Genet 260:417–425

    Article  CAS  PubMed  Google Scholar 

  • Palancade B, Dubois MF, Dahmus ME, Bensaude O (2001) Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Mol Cell Biol 21:6359–6368

    Article  CAS  PubMed  Google Scholar 

  • Palancade B, Dubois MF, Bensaude O (2002) FCP1 phosphorylation by casein kinase 2 enhances binding to TFIIF and RNA polymerase II carboxyl-terminal domain phosphatase activity. J Biol Chem 277:36061–36067

    Article  CAS  PubMed  Google Scholar 

  • Patturajan M, Schulte RJ, Sefton BM, Berezney R, Vincent M, Bensaude O, Warren SL, Corden JL (1998) Growth-related changes in phosphorylation of yeast RNA polymerase II. J Biol Chem 273:4689–4694

    Article  CAS  PubMed  Google Scholar 

  • Pidoux AL, Allshire RC (2000) Centromeres: getting a grip of chromosomes. Curr Opin Cell Biol 12:308–319

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Ishihama A (2002) Level of the RNA polymerase II in the fission yeast stays constant but phosphorylation of its carboxyl terminal domain varies depending on the phase and rate of cell growth. Genes Cells 7:273–284

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3rd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schroeder SC, Schwer B, Shuman S, Bentley D (2000) Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 14:2435–2440

    Article  CAS  PubMed  Google Scholar 

  • Schwer B, Linder P, Shuman S (1998) Effects of deletion mutations in the yeast Ces1 protein on cell growth and morphology and on high copy suppression of mutations in mRNA capping enzyme and translation initiation factor 4A. Nucleic Acids Res 26:803–809

    Article  CAS  PubMed  Google Scholar 

  • Sears DD, Hegemann JH, Shero JH, Hieter P (1995) Cis-acting determinants affecting centromere function, sister-chromatid cohesion and reciprocal recombination during meiosis in Saccharomyces cerevisiae. Genetics 139:1159–1173

    CAS  PubMed  Google Scholar 

  • Shero JH, Koval M, Spencer F, Palmer RE, Hieter P, Koshland D (1991) Analysis of chromosome segregation in Saccharomyces cerevisiae. Methods Enzymol 194:749–773

    CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Strunnikov AV, Kingsbury J, Koshland D (1995) CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Cell Biol 128:749–760

    CAS  PubMed  Google Scholar 

  • Thompson NE, Steinberg TH, Aronson DB, Burgess RR (1989) Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J Biol Chem 264:11511–11520

    CAS  PubMed  Google Scholar 

  • Trigon S, Morange M (1995) Different carboxyl-terminal domain kinase activities are induced by heat-shock and arsenite. Characterization of their substrate specificity, separation by Mono Q chromatography, and comparison with the mitogen-activated protein kinases. J Biol Chem 270:13091–13098

    Article  CAS  PubMed  Google Scholar 

  • Trigon S, Serizawa H, Conaway JW, Conaway RC, Jackson SP, Morange M (1998) Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J Biol Chem 273:6769–6775

    Article  CAS  PubMed  Google Scholar 

  • Tschumper G, Carbon J (1983) Copy number control by a yeast centromere. Gene 23:221–232

    Article  CAS  PubMed  Google Scholar 

  • Washington K, Ammosova T, Beullens M, Jerebtsova M, Kumar A, Bollen M, Nekhai S (2002) Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II. J Biol Chem 277:40442–40448

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wilcox CB, Devasahayam G, Hackett RL, Arevalo-Rodriguez M, Cardenas ME, Heitman J, Hanes SD (2000) The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J 19:3727–3738

    Article  CAS  PubMed  Google Scholar 

  • Yeo M, Lin PS, Dahmus ME, Gill GN (2003) A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 278:26078–26085

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–642

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Corden JL (1991) Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 266:2290–2296

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Michael S. Kobor, Phil Hieter, and Paul Kaufman for strains and to the eukaryotic centromere community for advice. This work was funded by GM 60498 to Caroline M. Kane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Kane.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierstorff, E., Kane, C.M. Genetic interactions between an RNA polymerase II phosphatase and centromeric elements in Saccharomyces cerevisiae . Mol Genet Genomics 271, 603–615 (2004). https://doi.org/10.1007/s00438-004-1009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1009-5

Keywords

Navigation