Skip to main content
Log in

Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The ability to propagate under anaerobic conditions is an essential and unique trait of brewer’s or baker’s yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From the phylogenetic point of view, this enzyme is closely related to a bacterial DHODase from Lactococcus lactis. Here we show that S. kluyveri, which separated from the S. cerevisiae lineage more than 100 million years ago, represents an evolutionary intermediate, having both cytoplasmic and mitochondrial DHODases. We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson JO, Doolittle WF, Nesbo CL (2001) Are there bugs in our genome? Science 292:1848–1850

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

  • Bjornberg O, Rowland P, Larsen S, Jensen KF (1997) Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry 36:16197–16205

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Labouesse G, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae / E.coli shuttle vectors. Yeast 7:609–615

    CAS  PubMed  Google Scholar 

  • Cliften PF, Hillier LW, Fulton L, Graves T, Minier T, Gish WR, Waterston RH, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Denis-Duphil M (1989) Pyrimidine biosynthesis in Saccharomyces cerevisiae: the ura2 cluster gene, its multifunctional enzyme product, and other structural or regulatory genes involved in de novo UMP synthesis. Biochem Cell Biol 67:612–631

    CAS  PubMed  Google Scholar 

  • Duntze W, Neumann D, Gancedo J M, Atzpodien W, Holzer H (1969) Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisie. Eur J Biochem 10:83–89

    CAS  PubMed  Google Scholar 

  • Gancedo C, Serrano R (1989) Metabolism and physiology of Yeasts. In: Rose AH, Harrison JS (eds) The Yeasts (vol 3). Academic Press, London, pp 205–259

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  Google Scholar 

  • Gojkovic Z, Jahnke K, Schnackerz KD, Piskur J (2000) PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 295:1073–87

    Article  CAS  PubMed  Google Scholar 

  • Gojkovic Z, Sandrini MPB, Piskur J (2001) Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 158:999–1011

    CAS  PubMed  Google Scholar 

  • Hough JS, Briggs DE, Stevens R, Young TW (1982) Hopped worth and beer (Malting and brewing science, vol 2). Chapman and Hall, London

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, and Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    CAS  PubMed  Google Scholar 

  • Knecht W, Bergjohann U, Gonski S, Kirschbaum B, Löffler M (1996) Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem 240:292–301

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. FEMS Yeast Res 3:417–432

    Article  CAS  PubMed  Google Scholar 

  • Langkjaer RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421:848–852

    Article  CAS  PubMed  Google Scholar 

  • Møller K, Olsson L, Piskur J (2001) Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri. J Bacteriol 183:2485–2489

    Article  PubMed  Google Scholar 

  • Møller K, Cristensen B, Forster J, Piskur J, Nielsen J, Olsson L (2002) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng 77:186–193

    Article  PubMed  Google Scholar 

  • Nagy M, Lacroute F, Thomas D (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA 89:8966–8970

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Shi N-Q, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipities bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50:339–345

    Article  CAS  PubMed  Google Scholar 

  • Subik J, Kolarov J, Kovac L (1974) Anaerobic growth and formation of respiration-deficient mutants of various species of yeasts. FEBS Lett 45:263–266

    CAS  PubMed  Google Scholar 

  • Tong XD, Xue B, Sun Y (2001) A novel magnetic affinity support for protein adsorption and purification. Biotechnol Prog 17:134–139

    Article  CAS  PubMed  Google Scholar 

  • Ullrich A, Knecht W, Fries M, Löffler M (2001) Recombinant expression of N-terminal truncated mutants of the membrane bound mouse, rat and human flavoenzyme dihydroorotate dehydrogenase. A versatile tool to rate inhibitor effects? Eur J Biochem 268:1861–1868

    CAS  PubMed  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vaughan-Martini A, Martini A (1998) A taxonomic study. In: Kurtzman CP, Fell J (eds) The Yeasts (vol 1). Elsevier Science, Amsterdam, pp 358–371

  • Viser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792

    PubMed  Google Scholar 

  • Wolfe K, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    CAS  PubMed  Google Scholar 

  • Young TW, Lewis MJ (1995) Brewing. Chapman and Hall, London

Download references

Acknowledgments

The authors thank A. Kahn for reading and commenting on the manuscript. This project was partially supported by grants from the Danish Research Council and the DFG (Graduiertenkollegium Marburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Piškur.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gojković, Z., Knecht, W., Zameitat, E. et al. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genomics 271, 387–393 (2004). https://doi.org/10.1007/s00438-004-0995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-0995-7

Keyword

Navigation