Skip to main content

Advertisement

Log in

Mutational analysis of the binding affinity and transport activity for N -acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The highly differentiated bacterium Streptomyces olivaceoviridis efficiently hydrolyses chitin, a highly abundant natural polysaccharide, to low molecular weight products including N-acetylglucosamine (NAG) and N,N’ -diacetylchitobiose (chitobiose). NAG is taken up by a PTS (phosphoenolpyruvate-dependent phosphotransferase system) which includes the PtsC2 protein, and via the ABC (ATP-binding cassette) transporter Ngc, which itself includes the substrate-binding protein NgcE. This is at present the only ABC transporter which is known to mediate specific uptake of NAG (Km 0.48 μM, Vmax 1.3 nmol/min/mg dry weight) and is competitively inhibited by chitobiose (Ki 0.68 μM). The latter finding suggests that the Ngc system transports both NAG and chitobiose efficiently. To identify amino acid residues required for the function of NgcE, either the wild-type or one of several mutant forms of the ngcE gene was introduced into the strain S. olivaceoviridis ΔNgcE/ΔPtsC1/ΔPtsC2, which lacks both functional transport systems for NAG, and chromosomal recombinants were selected. Based on the in vivo transport parameters of the recombinants, and the in vitro binding characteristics of the corresponding purified proteins, the following conclusions can be drawn. (1) Replacement of the C-terminally located residue Y396 by A (Y396A) has little effect on ligand-binding or transport parameters. The W395A mutation also induced little change in the substrate affinity in vitro, but it led in vivo to a marked increase (11 fold) in Km, and enhanced Vmax (by 1.5 fold). (2) The amino acids Y201 and W280 both contribute (51% and 38%) to the ligand-binding capacity of NgcE. They are both very important for the in vivo function of the complete transport apparatus; strains expressing either Y201A or W280A show drastically (100 or 150 times) enhanced Km values. (3) The concomitant presence of either Y200 and W280 or Y201 and W280 is essential for the function of NgcE. (4) Y201 is located within a tyrosyl-rich motif. This has been found to share some features with the ligand-binding site of amelogenins (enamel matrix proteins), which interact with NAG residues in glycoconjugates. In addition, it is distantly related to the ligand-binding site(s) in the plant-lectins UDA ( Urtica dioica agglutinin, specific for NAG and its oligomers) and WGA (wheat germ agglutinin, which recognises a motif comprising three consecutive NAG residues).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2
Fig. 3A, B
Fig. 4

Similar content being viewed by others

References

  • Beyer M, Diekmann H (1985) The chitinase system of Streptomyces sp. ATCC 11238 and its significance for fungal cell wall degradation. Appl Microbiol Biotechnol 23:140–146

    CAS  Google Scholar 

  • Blaak H, Schnellmann J, Walter S, Henrissat B, Schrempf H (1993) Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem 214:659–669

    CAS  PubMed  Google Scholar 

  • Blondelet-Rouault MH, Weiser J, Lebrihi A, Branny P, Pernodet JL (1997) Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315–317

    Article  CAS  PubMed  Google Scholar 

  • Böhm A, Diez J, Diederichs K, Welte W, Boos W (2002) Structural model of MalK, the ABC subunit of the maltose transporter in Escherichia coli. J Biol Chem 277:3708–3717

    Article  PubMed  Google Scholar 

  • Boos W, Lucht JM (1996) Periplasmic binding protein-dependent ABC transporters. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society of Microbiology, Washington, D.C., pp 1175–1209

  • Cheng J, Sharma S, Quiocho FA, Davidson AL (2001) Trapping the transition state of an ATP-binding cassette transporter: evidence for a concentrated mechanism of maltose transport. Proc Natl Adad Sci USA 98:1525–153

    Article  Google Scholar 

  • Diederichs K, Diez J, Greller G, Müller C, Breed J, Schnell C, Vonrhein C, Boos W, Welte W (2000) Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J 19:5951–5961

    Article  CAS  PubMed  Google Scholar 

  • Diez J, Diederichs K, Greller G, Horlacher R, Boos W, Welte W (2001) The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic Archaeon Thermococcus litoralis at 1.85 Å. J Mol Biol 305:905–915

    Article  CAS  PubMed  Google Scholar 

  • Espinosa JF, Asensio JL, Garcia JL, Laynez J, Bruix M, Wright C, Siebert HC, Gabius HJ, Canada FJ, Jimenez-Barbero J (2000) NMR investigations of protein-carbohydrate interactions binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N′,N′′-triacetylchitotriose. Eur J Biochem 267:3965–3978

    Article  CAS  PubMed  Google Scholar 

  • Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS (2001) Structural basis for oligosaccharide recognition by Pyrococcus furiosus maltodextrin-binding protein. J Mol Biol 305:891–904

    Article  CAS  PubMed  Google Scholar 

  • Harata K, Muraki M (2000) Crystal structures of Urtica dioica agglutinin and its complex with tri- N -acetylchitotriose. J Mol Biol 297:673–681

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich, UK

    Google Scholar 

  • Horlacher R, Xavier KB, Santos H, DiRuggiero J, Kossmann M, Boos W (1998) Archaeal binding protein-dependent ABC-transporter: Molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180:680–689

    CAS  PubMed  Google Scholar 

  • Janssen GR, Bibb MJ (1993) Derivatives of pUC18 that have Bgl II sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124:133–134

    CAS  PubMed  Google Scholar 

  • Jensen JB, Peters NK, Bhuvaneswari TV (2002) Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in Sinorhizobium meliloti. J Bacteriol 184:2978–2986

    Article  CAS  PubMed  Google Scholar 

  • Koning SM, Elferink MG, Konings WN, Driessen AJ (2001) Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J Bacteriol 183:4979–4984

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Martineau P, Szmelcman S, Spurlino JC, Quiocho FA, Hofnung M (1990) Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein. J Mol Biol 214:337–352

    CAS  PubMed  Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford

  • Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58

    Article  CAS  PubMed  Google Scholar 

  • Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5:997–1015

    CAS  PubMed  Google Scholar 

  • Ravindranath RM, Moradian-Oldak J, Fincham AG (1999) Tyrosyl motif in amelogenins binds N-acetyl-D-glucosamine. J Biol Chem 274:2464–2471

    Article  CAS  PubMed  Google Scholar 

  • Richarme G, Kepes A (1983) Study of binding protein-ligand interaction by ammonium sulfate-assisted adsorption on cellulose esters filters. Biochim Biophys Acta 742:16–24

    CAS  PubMed  Google Scholar 

  • Russell RRB, Aduse-Opoku J, Sutcliffe IC, Tao L, Ferretti JJ (1992) A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem 267:4631–4637

    CAS  PubMed  Google Scholar 

  • Saier MH Jr (2000) Families of transmembrane sugar transport proteins. Mol Microbiol 35:699–710

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Fujii T, Yoneyama T, Redenbach M, Ohno T, Watanabe T, Miyashita K (1999) High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 63:710–718

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Saul FA, Rovira P, Boulot G, Damme EJ, Peumans WJ, Truffa-Bachi P, Bentley GA (2000) Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Structure Fold Des 8:593–603

    Article  CAS  PubMed  Google Scholar 

  • Schlösser A, Schrempf H (1996) A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/-triose transport system from the cellulose degrader Streptomyces reticuli. Eur J Biochem 242:332–338

    PubMed  Google Scholar 

  • Schlösser A, Weber A, Schrempf H (2001) Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. FEMS Microbiol Lett 196:77–83

    PubMed  Google Scholar 

  • Schneider E (2001) ABC transporter catalyzing carbohydrate uptake. Res Microbiol 152:303–310

    Article  CAS  PubMed  Google Scholar 

  • Schrempf H, Schnellmann J, Zeltins A, Kolbe S, Becirevic A, Wang F, Chu HH, Saito A, Fischer S (2001) Properties of the chitin-binding protein CHB1 and its homologues. In: Muzzarelli RAA (ed) Chitin enzymology 2001. Atec, Italy, pp 111–117

  • Sharff AJ, Rodseth LE, Szmelcman S, Hofnung M, Quiocho FA (1995) Refined structures of two insertion/deletion mutants probe function of the maltodextrin binding protein. J Mol Biol 246:8–13

    Article  CAS  PubMed  Google Scholar 

  • Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872–5881

    CAS  PubMed  Google Scholar 

  • Wang F, Xiao X, Saito A, Schrempf H (2002) Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N -acetylglucosamine. Mol Genet Genomics 268:344–351

    Article  CAS  PubMed  Google Scholar 

  • Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178:91–104

    CAS  PubMed  Google Scholar 

  • Xavier KB, Martins LO, Peist R, Kossmann M, Boos W, Santos H (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 178:4773-4777

    CAS  PubMed  Google Scholar 

  • Xiao X, Wang F, Saito A, Majka J, Schlösser A, Schrempf H (2002) The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N -acetylglucosamine and N, N′ -diacetylchitobiose. Mol Gen Genomics 267:429-439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. van Eyck for help in typing. A. Saito gratefully acknowledges the award of a fellowship from the Alexander von Humboldt (AvH) Foundation, followed by one from the Japanese Society for the Promotion of Science (JSPS). The work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (DFG) to H. Schrempf

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schrempf.

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, A., Schrempf, H. Mutational analysis of the binding affinity and transport activity for N -acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis . Mol Genet Genomics 271, 545–553 (2004). https://doi.org/10.1007/s00438-004-0981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-0981-0

Keywords

Navigation