Skip to main content

Advertisement

Log in

Effects of mutations in the N terminal region of the yeast G protein α-subunit Gpa1p on signaling by pheromone receptors

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The sites and modes of interaction between G protein-coupled receptors and their cognate heterotrimeric G proteins remain poorly defined. The C-terminus of the Gα subunit is the best established site of contact of G proteins with receptors, but structural analyses and crosslinking studies suggest the possibility of interactions at the N-terminus of Gα as well. We screened for mutations in the N-terminal region of the Gα subunit encoded by the yeast GPA1 gene that specifically affect the ability of the G protein to be activated by the yeast α-mating factor receptor. The screen led to identification of substitutions of glutamine or proline for Leu18 of Gpa1p that reduce the response to the pheromones α-factor and a-factor without affecting cellular levels of the subunit or its ability to interact with β and γ subunits. The mutations do not appear to affect the intrinsic ability of the G protein to be converted to the activated state. The low yield of different mutations with this phenotype indicates either that the N-terminal segment of the yeast Gα subunit does not undergo extensive interactions with the α-factor receptor, or that this region can not be altered without detrimental effects upon the formation of G protein trimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4
Fig. 5A–E
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435

    Article  CAS  PubMed  Google Scholar 

  • Apanovitch DM, Iiri T, Karasawa T, Bourne HR, Dohlman HG (1998a) Second site suppressor mutations of a GTPase-deficient G-protein α-subunit. Selective inhibition of Gβγ-mediated signaling. J Biol Chem 273:28597–28602

    Article  CAS  PubMed  Google Scholar 

  • Apanovitch DM, Slep KC, Sigler PB, Dohlman HG (1998b) Sst2 is a GTPase-activating protein for Gpa1: purification and characterization of a cognate RGS-Gα protein pair in yeast. Biochemistry 37:4815–4822

    Article  CAS  PubMed  Google Scholar 

  • Aris L, Gilchrist A, Rens-Domiano S, Meyer C, Schatz PJ, Dratz EA, Hamm HE (2001) Structural requirements for the stabilization of metarhodopsin II by the C terminus of the α subunit of transducin. J Biol Chem 276:2333–2339

    Article  CAS  PubMed  Google Scholar 

  • Bardwell L, Cook JG, Inouye CJ, Thorner J (1994) Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev Biol 166:363–379

    Article  CAS  PubMed  Google Scholar 

  • Blahos J, Fischer T, Brabet I, Stauffer D, Rovelli G, Bockaert J, Pin JP (2001) A novel site on the Gα protein that recognizes heptahelical receptors. J Biol Chem 276:3262–3269

    Article  CAS  PubMed  Google Scholar 

  • Blumer KJ, Thorner J (1991) Receptor-G protein signaling in yeast. Annu Rev Physiol 53:37–57

    Article  CAS  PubMed  Google Scholar 

  • Bohm A, Gaudet R, Sigler PB (1997) Structural aspects of heterotrimeric G-protein signaling. Curr Opin Biotechnol 8:480–487

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615

    CAS  PubMed  Google Scholar 

  • Boone C, Davis NG, Sprague GF Jr (1993) Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci USA 90:9921–9925

    CAS  PubMed  Google Scholar 

  • Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134–142

    Google Scholar 

  • Brown AJ, Dyos SL, Whiteway MS, White JH, Watson MA, Marzioch M, Clare JJ, Cousens DJ, Paddon C, Plumpton C, Romanos MA, Dowell SJ (2000) Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/mammalian G protein α-subunit chimeras. Yeast 16:11–22

    Article  CAS  PubMed  Google Scholar 

  • Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33

    CAS  PubMed  Google Scholar 

  • Cadwell RC, Joyce GF (1994) Mutagenic PCR. PCR Methods Appl 3:S136–140

    CAS  PubMed  Google Scholar 

  • Cai K, Itoh Y, Khorana HG (2001) Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc Natl Acad Sci USA 98:4877–4882

    Article  CAS  PubMed  Google Scholar 

  • Coleman DE, Sprang SR (1996) How G proteins work: a continuing story. Trends Biochem Sci 21:41–44

    Article  CAS  PubMed  Google Scholar 

  • Coleman DE, Sprang SR (1998) Crystal structures of the G protein Giα1 complexed with GDP and Mg2+: a crystallographic titration experiment. Biochemistry 37:14376–14385

    Article  CAS  PubMed  Google Scholar 

  • Coleman DE, Sprang SR (1999) Structure of Giα1.GppNHp, autoinhibition in a Gα protein-substrate complex. J Biol Chem 274:16669–16672

    Article  CAS  PubMed  Google Scholar 

  • Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR (1994a) Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265:1405–1412

    CAS  PubMed  Google Scholar 

  • Coleman DE, Lee E, Mixon MB, Linder ME, Berghuis AM, Gilman AG, Sprang SR (1994b) Crystallization and preliminary crystallographic studies of Giα1 and mutants of Giα1 in the GTP- and GDP-bound states. J Mol Biol 238:630–634

    Article  CAS  PubMed  Google Scholar 

  • Conklin BR, Bourne HR (1993) Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell 73:631–641

    Google Scholar 

  • Conklin BR, Farfel Z, Lustig KD, Julius D, Bourne HR (1993) Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363:274–276

    CAS  PubMed  Google Scholar 

  • Crowe ML, Perry BN, Connerton IF (2000) Golf complements a GPA1 null mutation in Saccharomyces cerevisiae and functionally couples to the STE2 pheromone receptor. J Recept Signal Transduct Res 20:61–73

    CAS  PubMed  Google Scholar 

  • DiBello PR, Garrison TR, Apanovitch DM, Hoffman G, Shuey DJ, Mason K, Cockett MI, Dohlman HG (1998) Selective uncoupling of RGS action by a single point mutation in the G protein α-subunit. J Biol Chem 273:5780–5784

    Article  CAS  PubMed  Google Scholar 

  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60:653–688

    CAS  PubMed  Google Scholar 

  • Dohlman HG, Goldsmith P, Spiegel AM, Thorner J (1993) Pheromone action regulates G-protein α-subunit myristoylation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:9688–9692

    CAS  PubMed  Google Scholar 

  • Dohlman HG, Song J, Ma D, Courchesne WE, Thorner J (1996) Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein α subunit). Mol Cell Biol 16:5194–5209

    CAS  PubMed  Google Scholar 

  • Dohlman HG, Song J, Apanovitch DM, DiBello PR, Gillen KM (1998) Regulation of G protein signalling in yeast. Semin Cell Dev Biol 9:135–141

    Article  CAS  PubMed  Google Scholar 

  • Dratz EA, Furstenau JE, Lambert CG, Thireault DL, Rarick H, Schepers T, Pakhlevaniants S, Hamm HE (1993) NMR structure of a receptor-bound G-protein peptide. Nature 363:276–281

    Article  CAS  PubMed  Google Scholar 

  • Erlenbach I, Kostenis E, Schmidt C, Serradeil-Le Gal C, Raufaste D, Dumont ME, Pausch MH, Wess J (2001) Single amino acid substitutions and deletions that alter the G protein coupling properties of the V2 vasopressin receptor identified in yeast by receptor random mutagenesis. J Biol Chem 276:29382–29392

    Article  CAS  PubMed  Google Scholar 

  • Garcia PD, Onrust R, Bell SM, Sakmar TP, Bourne HR (1995) Transducin-α C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. EMBO J 14:4460–4469

    CAS  PubMed  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast- Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    CAS  PubMed  Google Scholar 

  • Gilchrist A, Bunemann M, Li A, Hosey MM, Hamm HE (1999) A dominant-negative strategy for studying roles of G proteins in vivo. J Biol Chem 274:6610–6616

    Article  CAS  PubMed  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JP, Dietzel C, Kurjan J (1991) The carboxyl terminus of Scg1, the Gα subunit involved in yeast mating, is implicated in interactions with the pheromone receptors. Genes Dev 5:467–474

    CAS  PubMed  Google Scholar 

  • Ho MK, Wong YH (2000) The amino terminus of Gα(z) is required for receptor recognition, whereas its α4/β6 loop is essential for inhibition of adenylyl cyclase. Mol Pharmacol 58:993–1000

    CAS  PubMed  Google Scholar 

  • Holland MJ, Hager GL, Rutter WJ (1977) Characterization of purified poly(adenylic acid)-containing messenger ribonucleic acid from Saccharomyces cerevisiae. Biochemistry 16:8–16

    CAS  PubMed  Google Scholar 

  • Itoh Y, Cai K, Khorana HG (2001) Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc Natl Acad Sci USA 98:4883–4887

    Article  CAS  PubMed  Google Scholar 

  • Kajkowski EM, Price LA, Pausch MH, Young KH, Ozenberger BA (1997) Investigation of growth hormone releasing hormone receptor structure and activity using yeast expression technologies. J Recept Signal Transduct Res 17:293–303

    CAS  PubMed  Google Scholar 

  • Kallal L, Kurjan J (1997) Analysis of the receptor binding domain of Gpa1p, the G(α) subunit involved in the yeast pheromone response pathway. Mol Cell Biol 17:2897–2907

    CAS  PubMed  Google Scholar 

  • King K, Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1990) Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and Gs α subunit. Science 250:121–123

    CAS  PubMed  Google Scholar 

  • Kisselev OG, Kao J, Ponder JW, Fann YC, Gautam N, Marshall GR (1998) Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc Natl Acad Sci USA 95:4270–4275

    Article  CAS  PubMed  Google Scholar 

  • Kostenis E, Degtyarev MY, Conklin BR, Wess J (1997) The N-terminal extension of Gαq is critical for constraining the selectivity of receptor coupling. J Biol Chem 272:19107–19110

    CAS  PubMed  Google Scholar 

  • Kurjan J, Hirsch JP, Dietzel C (1991) Mutations in the guanine nucleotide-binding domains of a yeast Gα protein confer a constitutive or uninducible state to the pheromone response pathway. Genes Dev 5:475–483

    CAS  PubMed  Google Scholar 

  • Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369:621–628

    Article  CAS  PubMed  Google Scholar 

  • Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319

    Article  CAS  PubMed  Google Scholar 

  • Lan KL, Sarvazyan NA, Taussig R, Mackenzie RG, DiBello PR, Dohlman HG, Neubig RR (1998) A point mutation in Gαo and Gαi1 blocks interaction with regulator of G protein signaling proteins. J Biol Chem 273:12794–12797

    Article  CAS  PubMed  Google Scholar 

  • Leavitt LM, Macaluso CR, Kim KS, Martin NP, Dumont ME (1999) Dominant negative mutations in the α-factor receptor, a G protein-coupled receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae. Mol Gen Genet 261:917–932

    Article  CAS  PubMed  Google Scholar 

  • Lichtarge O, Bourne HR, Cohen FE (1996) Evolutionarily conserved Gαβγ binding surfaces support a model of the G protein-receptor complex. Proc Natl Acad Sci USA 93:7507–7511

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Conklin BR, Blin N, Yun J, Wess J (1995) Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. Proc Natl Acad Sci USA 92:11642–11646

    CAS  PubMed  Google Scholar 

  • Martin EL, Rens-Domiano S, Schatz PJ, Hamm HE (1996) Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J Biol Chem 271:361–366

    Article  CAS  PubMed  Google Scholar 

  • Martin NP, Celic A, Dumont ME (2002) Mutagenic mapping of helical structures in the transmembrane segments of the yeast α-factor receptor. J Mol Biol 317:765–788

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni MR, Taddei S, Giusti L, Rovero P, Galoppini C, D’Ursi A, Albrizio S, Triolo A, Novellino E, Greco G, Lucacchini A, Hamm HE (2000) A Gα(s) carboxyl-terminal peptide prevents G(s) activation by the A(2A) adenosine receptor. Mol Pharmacol 58:226–236

    CAS  PubMed  Google Scholar 

  • Mentesana PE, Dosil M, Konopka JB (2002) Functional assays for mammalian G-protein-coupled receptors in yeast. Methods Enzymol 344:92–111

    CAS  PubMed  Google Scholar 

  • Metodiev MV, Matheos D, Rose MD, Stone DE (2002) Regulation of MAPK function by direct interaction with the mating-specific Gα in yeast. Science 296:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Miyajima I, Arai K, Matsumoto K (1989) GPA1Val-50 mutation in the mating-factor signaling pathway in Saccharomyces cerevisiae. Mol Cell Biol 9:2289–2297

    CAS  PubMed  Google Scholar 

  • Muhlrad D, Hunter R, Parker R (1992) A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82

    CAS  PubMed  Google Scholar 

  • Onrust R, Herzmark P, Chi P, Garcia PD, Lichtarge O, Kingsley C, Bourne HR (1997) Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science 275:381–384

    Article  CAS  PubMed  Google Scholar 

  • Overton MC, Blumer KJ (2000) G-protein-coupled receptors function as oligomers in vivo. Curr Biol 10:341–344

    CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    CAS  PubMed  Google Scholar 

  • Papasavvas S, Arkinstall S, Reid J, Payton M (1992) Yeast α-mating factor receptor and G-protein-linked adenylyl cyclase inhibition requires RAS2 and GPA2 activities. Biochem Biophys Res Commun 184:1378–1385

    CAS  PubMed  Google Scholar 

  • Price LA, Kajkowski EM, Hadcock JR, Ozenberger BA, Pausch MH (1995) Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol Cell Biol 15:6188–6195

    CAS  PubMed  Google Scholar 

  • Price LA, Strnad J, Pausch MH, Hadcock JR (1996) Pharmacological characterization of the rat A2a adenosine receptor functionally coupled to the yeast pheromone response pathway. Mol Pharmacol 50:829–837

    CAS  PubMed  Google Scholar 

  • Rasenick MM, Watanabe M, Lazarevic MB, Hatta S, Hamm HE (1994) Synthetic peptides as probes for G protein function. Carboxyl-terminal Gαs peptides mimic Gs and evoke high affinity agonist binding to β-adrenergic receptors. J Biol Chem 269:21519–21525

    CAS  PubMed  Google Scholar 

  • Raw AS, Coleman DE, Gilman AG, Sprang SR (1997) Structural and biochemical characterization of the GTPγS-, GDP.Pi-, and GDP-bound forms of a GTPase-deficient Gly42→Val mutant of Giα1. Biochemistry 36:15660–15669

    Article  CAS  PubMed  Google Scholar 

  • Rondard P, Iiri T, Srinivasan S, Meng E, Fujita T, Bourne HR (2001) Mutant G protein α subunit activated by Gβγ: a model for receptor activation? Proc Natl Acad Sci USA 98:6150–6155

    Article  CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  • Sommers CM, Dumont ME (1997) Genetic interactions among the transmembrane segments of the G protein coupled receptor encoded by the yeast STE2 gene. J Mol Biol 266:559–575

    Article  CAS  PubMed  Google Scholar 

  • Sommers CM, Dumont ME (1999) Genetic approaches for studying the structure and function of G protein-coupled receptors in yeast. In: Wess J (ed) Structure-function analysis of G protein-coupled receptors. Wiley-Liss, New York, pp 141–166

  • Sommers CM, Martin NP, Akal-Strader A, Becker JM, Naider F, Dumont ME (2000) A limited spectrum of mutations causes constitutive activation of the yeast α-factor receptor. Biochemistry 39:6898–6909

    Article  CAS  PubMed  Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a G-protein βγ dimer at 2.1 Å resolution. Nature 379:369–374

    CAS  PubMed  Google Scholar 

  • Song J, Dohlman HG (1996) Partial constitutive activation of pheromone responses by a palmitoylation-site mutant of a G protein α subunit in yeast. Biochemistry 35:14806–14817

    Article  CAS  PubMed  Google Scholar 

  • Song J, Hirschman J, Gunn K, Dohlman HG (1996) Regulation of membrane and subunit interactions by N-myristoylation of a G protein α subunit in yeast. J Biol Chem 271:20273–20283

    Article  CAS  PubMed  Google Scholar 

  • Sprague GF Jr (1991) Assay of yeast mating reaction. Methods Enzymol 194:77–93

    CAS  PubMed  Google Scholar 

  • Sprang SR (1997a) G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66:639–678

    Google Scholar 

  • Sprang SR (1997b) G proteins, effectors and GAPs: structure and mechanism. Curr Opin Struct Biol 7:849–856

    Article  CAS  PubMed  Google Scholar 

  • Staples RR, Dieckmann CL (1993) Generation of temperature-sensitive cbp1 strains of Saccharomyces cerevisiae by PCR mutagenesis and in vivo recombination: characteristics of the mutant strains imply that CBP1 is involved in stabilization and processing of cytochrome b pre-mRNA. Genetics 135:981–991

    Google Scholar 

  • Stone DE, Reed SI (1990) G protein mutations that alter the pheromone response in Saccharomyces cerevisiae. Mol Cell Biol 10:4439–4446

    CAS  PubMed  Google Scholar 

  • Stone DE, Cole GM, de Barros Lopes M, Goebl M, Reed SI (1991) N-myristoylation is required for function of the pheromone-responsive Gα protein of yeast: conditional activation of the pheromone response by a temperature-sensitive N-myristoyl transferase. Genes Dev 5:1969–1981

    CAS  PubMed  Google Scholar 

  • Swift S, Sheridan PJ, Covic L, Kuliopulos A (2000) PAR1 thrombin receptor-G protein interactions. Separation of binding and coupling determinants in the Gα subunit. J Biol Chem 275:2627–2635

    Article  CAS  PubMed  Google Scholar 

  • Taylor JM, Jacob-Mosier GG, Lawton RG, Remmers AE, Neubig RR (1994) Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβ and the amino terminus of Gα. J Biol Chem 269:27618–27624

    CAS  PubMed  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Giα1β1γ2. Cell 83:1047–1058

    CAS  PubMed  Google Scholar 

  • Wall MA, Posner BA, Sprang SR (1998) Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 6:1169–1183

    CAS  PubMed  Google Scholar 

  • Wess J (1997) G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J 11:346–354

    CAS  PubMed  Google Scholar 

  • Wess J (1998) Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther 80:231–264

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Stone (University of Illinois at Chicago) and Michael Holland (University of California, Davis) for providing antibodies, George Sprague (University of Oregon) for providing MAT α yeast strains, and Fred Naider (College of Staten Island, City University of New York) for providing synthetic a-factor. We benefited from technical assistance provided by Christine Sommers, Jun Yuan, and Michael Shea. We also thank Henrik Dohlman (University of North Carolina) for helpful discussions. This work was supported by NIH grant GM59357 and grant VM-169 from the American Cancer Society (both to M.E.D.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Dumont.

Additional information

Communicated by D. Y. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roginskaya, M., Connelly, S.M., Kim, K.S. et al. Effects of mutations in the N terminal region of the yeast G protein α-subunit Gpa1p on signaling by pheromone receptors. Mol Genet Genomics 271, 237–248 (2004). https://doi.org/10.1007/s00438-004-0975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-0975-y

Keywords

Navigation