Skip to main content
Log in

Asymmetrically acting lycopene β-cyclases (CrtLm) from non-photosynthetic bacteria

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene β-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene β-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic γ-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene β-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene β-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene β-cyclases and plant lycopene β- and ε-cyclases. These lycopene β-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5A–D
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • An G-H, Cho M-H, Johnson EA (1999) Monocyclic carotenoid biosynthetic pathway in the yeast Phaffia rhodozyma ( Xanthophyllomyces dendrorhous). J Biosci Bioeng 88:189–193

    Article  CAS  Google Scholar 

  • Armstrong G (1999) Carotenoid genetics and biochemistry. In: Cane DE (ed) Comprehensive natural products chemistry. Elsevier, Oxford, pp 321–352

  • Arrach N, Fernandez-Martin R, Cerda-Olmedo E, Avalos J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci USA 98:1687–1692

    CAS  PubMed  Google Scholar 

  • Arrach N, Schmidhauser TJ, Avalos J (2002) Mutants of the carotene cyclase domain of al-2 from Neurospora crassa. Mol Genet Genomics 266:914–921

    CAS  PubMed  Google Scholar 

  • Bartley GE, Scolnik PA, Beyer P (1999) Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly- cis pathway to yield pro-lycopene. Eur J Biochem 259:396–403

    CAS  PubMed  Google Scholar 

  • Britton G (1995) UV/Visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Birkhauser Verlag, Basel, pp 13–61

  • Britton G, Brown DJ, Goodwin TW, Leuenberger FJ, Schocher AJ (1977) The carotenoids of Flavobacterium strain R1560. Arch Microbiol 113:33–37

    CAS  PubMed  Google Scholar 

  • Candau R, Bejarano ER, Cerda-Olmedo E (1991) In vivo channeling of substrates in an enzyme aggregate for beta-carotene biosynthesis. Proc Natl Acad Sci USA 88:4936–4940

    CAS  PubMed  Google Scholar 

  • Coggins CW, Henning GL, Yokoyama H (1970) Lycopene accumulation induced by 2-(4-chlorophenylthio)-triethylamine hydrochloride. Science 168:1589–1590

    CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Gantt E (2001) One ring or two? Determination of ring number in carotenoids by lycopene varepsilon-cyclases. Proc Natl Acad Sci USA 98:2905–2910

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6:1107–1121

    Google Scholar 

  • Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626

    CAS  PubMed  Google Scholar 

  • Davies BH (1961) The carotenoids of Rhizophlyctis rosea. Phytochemistry 1:25–29

    Article  CAS  Google Scholar 

  • De la Guardia MD, Aragon CM, Murillo FJ, Cerda-Olmedo E (1971) A carotenogenic enzyme aggregate in Phycomyces: evidence from quantitative complementation. Proc Natl Acad Sci USA 68:2012–2015

    PubMed  Google Scholar 

  • Eisen JA, et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Gonzalez B, Sandmann G, Vioque A (1997) A new type of asymmetrically acting beta-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 272:9728–9733

    CAS  PubMed  Google Scholar 

  • Hannibal L, Lorquin J, D’Ortioli NA, Garcia N, Chaintreuil C, Masson-Boivin C, Dreyfus B, Giraud E (2000) Isolation and characterization of canthaxanthin biosynthesis genes from the photosynthetic bacterium Bradyrhizobium sp. strain ORS278. J Bacteriol 182:3850–3853

    Article  CAS  PubMed  Google Scholar 

  • Hausmann A, Sandmann G (2000) A single five-step desaturase is involved in the carotenoid biosynthesis pathway to beta-carotene and torulene in Neurospora crassa. Fungal Genet Biol 30:147–153

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg S, Jensen SL (1966) Bacterial carotenoids: the carotenoids of Mycobacterium phlei strain Vera. 1. The structures of the minor carotenoids. Acta Chem Scand 20:1187–1194

    CAS  PubMed  Google Scholar 

  • Hugueney P, Badillo A, Chen HC, Klein A, Hirschberg J, Camara B, Kuntz M (1995) Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts. Plant J 8:417–424

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama S, Shimokata K, Tsukamura M (1989) Carotenoid pigments of genus Rhodococcus. Microbiol Immunol 33:503–508

    CAS  PubMed  Google Scholar 

  • Kostichka K, Tao L, Bramucci M, Tomb J-F, Nagarajan V, Cheng Q (2003) A small cryptic plasmid from Rhodococcus erythropolis: characterization and utility for gene expression. Appl Microbiol Biotechnol 62:61–68

    Google Scholar 

  • Krubasik P, Sandmann G (2000a) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263:423–432

    CAS  PubMed  Google Scholar 

  • Krubasik P, Sandmann G (2000b) Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 28:806–810

    Article  CAS  PubMed  Google Scholar 

  • Krugel H, Krubasik P, Weber K, Saluz HP, Sandmann G (1999) Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim Biophys Acta 1439:57–64

    CAS  PubMed  Google Scholar 

  • Lang HP, Cogdell RJ, Gardiner AT, Hunter CN (1994) Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. J Bacteriol 176:3859–3869

    CAS  PubMed  Google Scholar 

  • Lee PC, Momen AZ, Mijts BN, Schmidt-Dannert C (2003) Biosynthesis of structurally novel carotenoids in Escherichia coli. Chem Biol 10:453–462

    Article  CAS  PubMed  Google Scholar 

  • Leftwick AP, Weedon BCL (1966) Carotenoids and related compounds: synthesis of 4-keto-g-carotene and its 1’-hydroxy-1’,2’-dihydro derivative. Acta Chem Scand 20:1195–1199

    CAS  PubMed  Google Scholar 

  • Leutwiler LS, Chapman DJ (1979) Biosynthesis of aryl carotenoids: inhibitor studies of chlorobactene biosynthesis in Chlorobium limicola f. thiosulfatophilum. Arch Microbiol 123:267–273

    CAS  PubMed  Google Scholar 

  • Linden H, Misawa N, Chamovitz D, Pecker I, Hirschberg J, Sandmann G (1991) Functional complementation in Escherichia coli of different phytoene desaturase genes and analysis of accumulated carotenes. Z Naturforsch [C] 46:1045–1051

    Google Scholar 

  • Martinez-Ferez IM, Vioque A (1992) Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. Plant Mol Biol 18:981–983

    CAS  PubMed  Google Scholar 

  • Mehta BJ, Cerda-Olmedo E (1999) Lycopene cyclization in Blakeslea trispora. Mycoscience 40:307–310

    CAS  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    CAS  PubMed  Google Scholar 

  • Page R (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pasamontes L, Hug D, Tessier M, Hohmann HP, Schierle J, van Loon AP (1997) Isolation and characterization of the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534. Gene 185:35–41

    Article  CAS  PubMed  Google Scholar 

  • Pecker I, Gabbay R, Cunningham FX, Jr., Hirschberg J (1996) Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30:807–819

    CAS  PubMed  Google Scholar 

  • Raisig A, Sandmann G (2001) Functional properties of diapophytoene and related desaturases of C(30) and C(40) carotenoid biosynthetic pathways. Biochim Biophys Acta 1533:164–170

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (2002) Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plantarum 116:431–440

    Article  CAS  Google Scholar 

  • Schnurr G, Misawa N, Sandmann G (1996) Expression, purification and properties of lycopene cyclase from Erwinia uredovora. Biochem J 315:869–874

    CAS  PubMed  Google Scholar 

  • Sun Z, Gantt E, Cunningham FJ Jr (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24352

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Sandmann G, Schnurr G, Satomi Y, Suzuki A, Misawa N (1996) The carotenoid 7,8-dihydro-psi end group can be cyclized by the lycopene cyclases from the bacterium Erwinia uredovora and the higher plant Capsicum annuum. Eur J Biochem 241:291–296

    CAS  PubMed  Google Scholar 

  • Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1’,2’-dihydro-gamma-carotene, 1’,2’-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168:270–276

    CAS  PubMed  Google Scholar 

  • Teramoto M, Takaichi S, Inomata Y, Ikenaga H, Misawa N (2003) Structural and functional analysis of a lycopene beta-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett 545:120–126

    Article  CAS  PubMed  Google Scholar 

  • Umeno D, Tobias AV, Arnold FH (2002) Evolution of the C30 carotenoid synthase CrtM for function in a C40 pathway. J Bacteriol 184:6690–6699

    Article  CAS  PubMed  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519

    Article  CAS  PubMed  Google Scholar 

  • Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ (1999) Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–461

    CAS  PubMed  Google Scholar 

  • Viveiros M, Krubasik P, Sandmann G, Houssaini-Iraqui M (2000) Structural and functional analysis of the gene cluster encoding carotenoid biosynthesis in Mycobacterium aurum A+. FEMS Microbiol Lett 187:95–101

    CAS  PubMed  Google Scholar 

  • Wang CW, Liao JC (2001) Alteration of product specificity of Rhodobacter sphaeroides phytoene desaturase by directed evolution. J Biol Chem 276:4161–4164

    Google Scholar 

  • White O, et al (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577

    Article  CAS  PubMed  Google Scholar 

  • Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, Poralla K, Götz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4’-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176:7719–7726

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jean-Francois Tomb for providing the genomic sequence of Rhodococcus AN12. We are grateful to Rich McKay for his expert assistance with LC-MS analysis. CPTA was a generous gift from Dr. Joseph Hirschberg (Hebrew University, Jerusalem)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Cheng.

Additional information

Communicated by E. Cerdá-Olmedo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, L., Picataggio, S., Rouvière, P.E. et al. Asymmetrically acting lycopene β-cyclases (CrtLm) from non-photosynthetic bacteria. Mol Genet Genomics 271, 180–188 (2004). https://doi.org/10.1007/s00438-003-0969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0969-1

Keywords

Navigation