Skip to main content
Log in

The roles of different regions of the CycH protein in c-type cytochrome biogenesis in Sinorhizobium meliloti

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Cytochrome c heme lyases encoded by the Sinorhizobium meliloti cycHJKL operon are responsible for generating the covalent bond between the heme prosthetic group and apocytochromes c. The CycH protein with its presumably membrane-associated N-terminal and periplasmic C-terminal parts is thought to be responsible for binding apocytochrome and presenting it to the heme ligation machinery. We propose that these two modules of CycH play roles in different functions of the protein. The N-terminal 96 amino acids represent an active subdomain of the protein, which is able to complement the protoporphyrin IX (PPIX) accumulation phenotype of the cycH mutant strain AT342, suggesting that it is involved in the final steps of heme C biosynthesis. Furthermore, three tetratricopeptide (TPR) domains have been identified in the C-terminal periplasmic region of the CycH protein. TPR domains are known to mediate protein-protein interactions. Each of these CycH domains is absolutely required for protein function, since plasmid constructs carrying cycH genes with in-frame TPR deletions were not able to complement cycH mutants for their nitrate reductase (Rnr) and nitrogen-fixing (Fix) phenotypes. We also found that the 309-amino acid N-terminal portion of the CycH, which includes all the TPR domains, is able to mediate the assembly of the c-type cytochromes required for the Rnr+ phenotype. In contrast, only the full-length protein confers the ability to fix nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5A, B
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alting-Mees MA, Short JM (1989) pBluescript II: gene mapping vectors. Nucleic Acids Res 17:9494

    CAS  PubMed  Google Scholar 

  • Bànfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol Gen Genet 184:318–325

    CAS  PubMed  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939

    Article  CAS  PubMed  Google Scholar 

  • Delgado MJ, Jeoman KH, Wu G, Vargas C, Davies AE, Poole RK, Johnston AWB, Downie JA (1995) Characterization of the cycHJKL genes involved in cytochrome c biogenesis and symbiotic nitrogen fixation in Rhizobium leguminosarum. J Bacteriol 177:4927–4934

    CAS  PubMed  Google Scholar 

  • DeShazer D, Woods DE (1996) Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. Biotechniques 20:762–764

    CAS  PubMed  Google Scholar 

  • Deshmukh M, Brasseur G, Daldal F (2000) Novel Rhodobacter capsulatus gene required for the biogenesis of various c-type cytochromes. Mol Microbiol 35:123–138

    CAS  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    CAS  PubMed  Google Scholar 

  • Élő P, Semsey S, Kereszt A, Nagy T, Papp P, Orosz L (1998) Integrative promoter cloning plasmid vectors for Rhizobium meliloti. FEMS Microbiol Lett 159:7–13

    Article  PubMed  Google Scholar 

  • Gabblert KK, Goldmann BS, Kranz RG (1997) Differential levels of specific cytochrome c biogenesis proteins in response to oxygen: analysis of the ccl operon in Rhodobacter capsulatus. J Bacteriol 179:5422–5428

    PubMed  Google Scholar 

  • Goldman BS, Beckman DL, Bali A, Monika EM, Gabbert KK, Kranz RG (1997) Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol 268:724–738

    CAS  PubMed  Google Scholar 

  • Grove J, Busby S, Cole J (1996) The role of the genes nrfEFG and ccmFH in cytochrome c biogenesis in Escherichia coli. Mol Gen Genet 252:332–341

    Article  CAS  PubMed  Google Scholar 

  • Kereszt A, Slaska-Kiss K, Putnoky P, Bánfalvi Z, Kondorosi A (1995) The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for “respiratory” nitrate reduction ex planta and for nitrogen fixation during symbiosis. Mol Gen Genet 247:39–47

    CAS  PubMed  Google Scholar 

  • Kiss GB, Vincze E, Kálmán Z, Forrai T, Kondorosi A (1979) Genetic and biochemical analysis of mutants affected in nitrate reduction in Rhizobium meliloti. J Gen Microbiol 113:105–111

    CAS  Google Scholar 

  • Kondorosi E, Bánfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lamb JR, Michaud WA, Sikorski RS, Hieter PA (1994) Cdc16p, Cdc23p and Cdc27p from a complex essential for mitosis. EMBO J 13:4321–4328

    CAS  PubMed  Google Scholar 

  • Lamb JR, Tugendreich S, Hieter P (1995) Tetratricopeptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259

    CAS  PubMed  Google Scholar 

  • Lang SE, Jenney FE, Daldal F (1996) Rhodobacter capsulatus CycH: a bipartite gene product with pleiotropic effects on the biogenesis of structurally different c-type cytochromes. J Bacteriol 178:5279–5290

    CAS  PubMed  Google Scholar 

  • Leong S, Williams P, Ditta G (1985) Analysis of the 5′ regulatory region of the gene for aminolevulinic acid of Rhizobium meliloti . Nucleic Acids Res 13:5965–5976

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook JE (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Miller JM (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Miyamoto K, Nishimura K, Masuda T, Tsuji H, Inokuchi H (1992) Accumulation of protoporphyrin IX in light sensitive mutants of Escherichia coli. FEBS Lett 310:246–248

    Article  CAS  PubMed  Google Scholar 

  • Olah B, Kiss E, Györgypál Z, Borzi J, Cinege G, Csanádi G, Batut J, Kondorosi A, Dusha I (2001) Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti. Mol Plant Microbe Interact 14:887–894

    CAS  PubMed  Google Scholar 

  • Page MD, Ferguson SJ (1995) Cloning and sequence analysis of cycH gene from Paracoccus denitrificans: the cycH gene product is required for assembly of all c-type cytochromes, including cytochrome c 1. Mol Microbiol 15:307–318

    CAS  PubMed  Google Scholar 

  • Pearce DA, Page MD, Norris HAC, Tomlinson EJ, Ferguson SJ (1998) Identification of the contiguous ccmF and ccmH genes: disruption of ccmF, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. Microbiology 144:467–477

    CAS  PubMed  Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen fixing symbiosis. Proc Natl Acad Sci USA 90:3309–3313

    CAS  PubMed  Google Scholar 

  • Ramseier TM, Winteler HV, Hennecke H (1991) Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem 266:7739–7803

    Google Scholar 

  • Ren Q, Thöny-Meyer L (2001) Physical interaction of CcmC whith heme and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 276:32591–32596

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Ahuja U, Thöny-Meyer L (2002) A bacterial cytochrome c heme lyase. J Biol Chem 277:7657–7663

    Article  CAS  PubMed  Google Scholar 

  • Reyes DJ, Tabche ML, Morera C, Girard ML, Romero D, Krol E, Miranda J, Soberon M (2000) Expression pattern of Rhizobium etli ccmJEFH genes involved in c-type cytochrome maturation. Gene 250:149–157

    Article  CAS  PubMed  Google Scholar 

  • Ritz D, Bott M, Hennecke H (1993) Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol 9:729–740

    CAS  PubMed  Google Scholar 

  • Ritz D, Thöny-Meyer L, Hennecke H (1995) The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. Mol Gen Genet 47:27–38

    Google Scholar 

  • Schulz H, Fabianek RA, Pellicioli EC, Hennecke H, Thöny-Meyer L (1999) Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA 96:6462–6467

    Article  CAS  PubMed  Google Scholar 

  • Schulz H, Pellicioli EC, Thöny-Meyer L (2000) New insights into the role of CcmC, CcmD and CcmE in the haem delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Mol Microbiol 37:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Sharypova LA, Yurgel SN, Keller M, Simarov BV, Pühler A, Becker A (1999) The eff-482 locus of Sinorhizobium meliloti CXM1-105 that influences symbiotic effectiveness consists of three genes encoding an endoglycanase, transcriptional regulator and an adenylate cyclase. Mol Gen Genet 261:1032–1044

    Article  CAS  PubMed  Google Scholar 

  • Tabche ML, Garcia EG, Miranda J, Escamilla JE, Soberon M (1998) Rhizobium etli cycHJKL gene locus involved in c-type cytochrome biogenesis: sequence analysis and characterization of two cycH mutants. Gene 208:215–219

    Article  CAS  PubMed  Google Scholar 

  • Thöny-Meyer L (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376

    PubMed  Google Scholar 

  • Thöny-Meyer L (2002) Cytochrome c maturation: a complex pathway for a simple task? Biochem Soc Trans 30:633–638

    PubMed  Google Scholar 

  • Yeoman KH, Delgado MJ, Wexler M, Downie JA, Johnston AWB (1997) High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology 143:127–134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the valuable comments and suggestions of L. Thöny-Meyer. We gratefully thank J. Borzi for technical assistance. The S. meliloti mutant PP2982 was a generous gift from P. Putnoky. This work was supported by Grant No. NKFP 4/015/2001 and the Bástyai-Holzer Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cinege.

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinege, G., Kereszt, A., Kertész, S. et al. The roles of different regions of the CycH protein in c-type cytochrome biogenesis in Sinorhizobium meliloti . Mol Genet Genomics 271, 171–179 (2004). https://doi.org/10.1007/s00438-003-0968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0968-2

Keywords

Navigation