Skip to main content
Log in

Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae with respect to ethanol formation under aerobic conditions could be caused by differences in the regulation of this enzyme activity. We have identified and cloned three genes encoding functional pyruvate decarboxylase enzymes ( PDC genes) from the type strain of S. kluyveri (Sk-PDC11, Sk-PDC12 and Sk-PDC13). The regulation of pyruvate decarboxylase in S. kluyveri was studied by measuring the total level of Sk-PDC mRNA and the overall enzyme activity under various growth conditions. It was found that the level of Sk-PDC mRNA was enhanced by glucose and oxygen limitation, and that the level of enzyme activity was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae and S. kluyveri each have three PDC genes, these have apparently arisen by independent duplications and specializations in each of the two yeast lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–C
Fig. 4A, B

Similar content being viewed by others

References

  • Baburina I, Gao Y, Hu Z, Jordan F (1994) Substrate activation of brewers’ yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry 33:5630–5635

    CAS  PubMed  Google Scholar 

  • Bianchi MM, Tizzani L, Destruelle M, Frontali L, Wésolowski-Louvel M (1996) The petite-negative yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol Microbiol 19:27–36

    CAS  PubMed  Google Scholar 

  • Destruelle M, Menghini R, Frontali L, Bianchi MM (1999) Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation. Yeast 15:361–370

    Article  CAS  PubMed  Google Scholar 

  • Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–23

    CAS  PubMed  Google Scholar 

  • Flikweert MT, van der Zanden L, Janssen WMTM, Steensma HY, van Dijken JP, Pronk JT (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12:247–257

    Article  CAS  PubMed  Google Scholar 

  • Flikweert MT, de Swaaf M, van Dijken JP, Pronk JT (1999a) Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174:73–79

    Article  CAS  PubMed  Google Scholar 

  • Flikweert MT, Kuyper M, van Maris AJ, Kötter P, van Dijken JP, Pronk JT (1999b) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate decarboxylase activity. Biotechnol Bioeng 66:42–50

    Article  CAS  PubMed  Google Scholar 

  • Franzblau SG, Sinclair NA (1983) Induction of pyruvate decarboxylase in Candida utilis. Mycopathology 83:29–33

    CAS  Google Scholar 

  • Gietz RD, Schiestl RH (1995) Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269

    Google Scholar 

  • Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173:7963–7969

    CAS  PubMed  Google Scholar 

  • Hohmann S (1993) Characterisation of PDC2, a gene necessary for high-level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae. Mol Gen Genet 241:657–666

    CAS  PubMed  Google Scholar 

  • Hohmann S (1997) Pyruvate decarboxylases. In: Zimmermann FK, Entian KD (eds) Yeast sugar metabolism. Technomic Publishing AG, Basel, pp 187–211

  • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    CAS  PubMed  Google Scholar 

  • Holzer H (1961) Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harbor Symp Quant Biol 26:277–288

    CAS  PubMed  Google Scholar 

  • Kaliterna J, Westhuis RA, Castrillo JI, van Dijken JP, Pronk JT (1995) Coordination of sucrose uptake and respiration in the yeast Debaryomyces yamadae. Microbiology 141:1567–1574

    CAS  PubMed  Google Scholar 

  • Kellermann E, Hollenberg CP (1988) The glucose- and ethanol-dependent regulation of PDC1 from Saccharomyces cerevisiae are controlled by two distinct promoter regions. Curr Genet 14:337–344

    CAS  PubMed  Google Scholar 

  • Kiers J, Zeeman AM, Luttik MAH, Thiele C, Castrillo JI, Steensma HY, van Dijken JP, Pronk JT (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469

    Article  CAS  PubMed  Google Scholar 

  • Langkjaer RB, Nielsen ML, Daugaard PR, Liu W, Piškur J (2000) Yeast chromosomes have been significantly reshaped during their evolutionary history. J Mol Biol 304:271–288

    Article  PubMed  Google Scholar 

  • Langkjaer RB, Cliften PF, Johnston M, Piškur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421:848–852

    Article  CAS  PubMed  Google Scholar 

  • Liesen T, Hollenberg CP, Heinisch JJ (1996) ERA, a novel cis -acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol Microbiol 21:621–632

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Møller K, Olsson L, Piškur J (2001a) Ability for anaerobic growth was not sufficient for development of the petite phenotype in Sacchromyces kluyveri. J Bacteriol 183:2485–2489

    Article  PubMed  Google Scholar 

  • Møller K, Tidemand L, Winther JR, Olsson L, Piškur J, Nielsen J (2001b) Production of a heterologous proteinase A by Saccharomyces kluyveri. Appl Microbiol Biotechnol 57:216–219

    Article  PubMed  Google Scholar 

  • Møller K, Christensen B, Förster J, Piškur J, Nielsen J, Olsson L (2002a) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng 77:186–193

    Article  PubMed  Google Scholar 

  • Møller K, Bro C, Piškur J, Nielsen J, Olsson L (2002b) Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri. FEMS Yeast Res 2:233–244

    Article  PubMed  Google Scholar 

  • Passoth V, Zimmermann M, Klinner U (1996) Peculiarities of the regulation of fermentation and respiration in the Crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 57:201–212

    Google Scholar 

  • Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J Gen Microbiol 129:43–49

    CAS  Google Scholar 

  • Phaff HJ, Miller MW, Shifrine M (1956) The taxonomy of yeasts isolated from Drosophila in the Yosemite region of California. Antonie van Leeuwenhoek 22:145–161

    PubMed  Google Scholar 

  • Piškur J, Smole S, Groth C, Petersen RF, Petersen MB (1998) Structure and genetic stability of mitochondrial genomes vary among yeasts of the genus Saccharomyces. Int J Syst Bacteriol 48:1015–1024

    PubMed  Google Scholar 

  • Pohl M (1997) Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Adv Biochem Eng 58:15–43

    CAS  PubMed  Google Scholar 

  • Postma E, Verduyn C, Scheffers WA, van Dijken JP (1989) Enzymatic analysis of the Crabtree-effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    CAS  PubMed  Google Scholar 

  • Prior C, Tizzani L, Fukuhara H, Wésolowski-Louvel M (1996) RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in K. lactis. Mol Microbiol 20:765–772

    CAS  PubMed  Google Scholar 

  • Pronk JT, Wenzel TJ, Luttik MAH, Klaassen CCM, Scheffers WA, Steensma HY, van Dijken JP (1994) Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Microbiology 140:601–610

    CAS  PubMed  Google Scholar 

  • Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    CAS  PubMed  Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  CAS  PubMed  Google Scholar 

  • Rieger M, Käppeli O, Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. J Gen Microbiol 129:653–661

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151:1146–1152

    CAS  PubMed  Google Scholar 

  • Schmitt HD, Ciriacy M, Zimmermann FK (1983) The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level. Mol Gen Genet 192:247–252

    CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394

    CAS  Google Scholar 

  • Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937

    CAS  Google Scholar 

  • Souciet J, et al (2000) Genomic exploration of the hemiascomycetous yeasts. 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Van de Peer Y, de Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci 10:569–570

    Google Scholar 

  • Van Hoek P, Flikweert MT, van der Aart QJM, Steensma HY, van Dijken JP, Pronk JT (1998) Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae. Appl Environ Microbiol 64:2133–2140

    PubMed  Google Scholar 

  • Van Urk H, Schipper D, Breedveld GJ, Mak PR, Scheffers WA, van Dijken JP (1989) Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim Biophys Acta 992:78–86

    PubMed  Google Scholar 

  • Van Urk H, Voll WSL, Scheffers WA, van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56:281–287

    Google Scholar 

  • Venturin C, Boze H, Moulin G, Galzy P (1995a) Glucose metabolism, enzymic analysis and product formation in chemostat culture of Hanseniaspora uvarum. Yeast 11:327–336

    CAS  PubMed  Google Scholar 

  • Venturin C, Boze H, Moulin G, Galzy P (1995b) Influence of oxygen limitation on glucose metabolism in Hanseniaspora uvarum K5 grown in chemostat. Biotechnol Lett 17:537–542

    CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers A, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    CAS  Google Scholar 

  • Westhuis RA, Visser W, Pronk JT, Sheffers WA, van Dijken JP (1994) Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology 140:703–715

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    CAS  PubMed  Google Scholar 

  • Zeeman AM, Kuyper M, Pronk JT, van Dijken JP, Steensma HY (2000) Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 16:611–620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kasper Møller was financed by a grant (No. 9900657) from the Danish Technical Research Council. Tina Johansen, Maibritt Pedersen and Jeanne Hvidtfeldt are acknowledged for their excellent assistance with the experiments. The work has been carried out in compliance with the current laws governing genetic experimentation in Denmark

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Møller.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Møller, K., Langkjaer, R.B., Nielsen, J. et al. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri . Mol Genet Genomics 270, 558–568 (2004). https://doi.org/10.1007/s00438-003-0950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0950-z

Keywords

Navigation