Evolution and microsynteny of the apyrase gene family in three legume genomes

Abstract

Apyrases have been suggested to play important roles in plant nutrition, photomorphogenesis, and nodulation. To help trace the evolution of these genes in the legumes—and possibly, the acquisition of new functions for nodulation—apyrase-containing BACs were sequenced from three legume genomes. Genomic sequences from Medicago truncatula, Glycine max and Lotus japonicus were compared to one another and to corresponding regions in Arabidopsis thaliana. A phylogenetic analysis of apyrase homologs from these regions and sequences from other legume species, as well as other plant families, identified a potentially legume-specific clade that contains a well-characterized soybean ( G. soja) apyrase, Gs52, as well as homologs from Dolichos, Lotus , Medicago and Pisum. Sister clades contain homologs from members of Brassicaceae, Solanaceae, Poaceae and Fabaceae. Comparisons of rates of change at synonymous and nonsynonymous sites in the Gs52 and sister clades show rapid evolution in the potentially legume-specific Gs52 clade. The genomic organization of the apyrase-containing BACs shows evidence of gene duplication, genomic rearrangement, and gene conversion among Gs52 homologs. Taken together, these results suggest a scenario of local apyrase gene duplication in an ancestor of the legumes, followed by functional diversification and increased rates of change in the new genes, and further duplications in the Galegae (which include the genera Medicago and Pisum). The study also provides a detailed comparison of genomic regions between two model genomes which are now being sequenced ( M. truncatula and L. japonicus), and a genome from an economically important legume species ( G. max).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–C

References

  1. Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K, Hirschberg CB, Robbins PW (1993) Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122:307–323

    CAS  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  3. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    CAS  PubMed  Google Scholar 

  4. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  5. Clark G, Thompson G, Roux SJ (2001) Signal transduction mechanisms in plants: an overview. Curr Sci 80:181–188

    Google Scholar 

  6. Cohn JR, Day RB, Stacey G (1998) Legume nodule organogenesis. Trends Plant Sci 3:105–110

    Article  Google Scholar 

  7. Cohn JR, Uhm T, Ramu S, Nam YW, Kim DJ, Penmetsa RV, Wood TC, Denny RL, Young ND, Cook DR, Stacey G (2001) Differential regulation of a family of apyrase genes from Medicago truncatula. Plant Physiol 125:2104–2119

    Article  CAS  PubMed  Google Scholar 

  8. Danesh D, Pe Fluela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND (1998) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet 96:196–206

    Article  CAS  Google Scholar 

  9. Day RB, McAlvin CB, Loh JT, Denny RL, Wood TC, Young ND, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant Microbe Interact 13:1053–1070

    CAS  PubMed  Google Scholar 

  10. Dayhoff MO (1979) Atlas of protein sequences and structure (vol 5, suppl 3) National Biomedical Research Foundation, Washington, DC, pp 353–358

  11. Doyle JJ (1994) Phylogeny of the legume family: an approach to understanding the origins of nodulation. Annu Rev Ecol Syst 25:325–349

    Article  Google Scholar 

  12. Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Amer J Bot 84:541–554

    CAS  Google Scholar 

  13. Eddy SR (2001) HMMER: Profile hidden Markov models for biological sequence analysis: the HMMER user’s guide (available at http://hmmer.wustl.edu/)

  14. Edwards FA, Gibb AJ (1993) ATP—a fast neurotransmitter. FEBS Lett 325:86–9

    Article  CAS  PubMed  Google Scholar 

  15. Etzler ME, Kalsi G, Ewing NN, Roberts NJ, Day RB, Murphy JB (1999) A nod factor binding lectin with apyrase activity from legume roots. Proc Natl Acad Sci USA 96:5856–5861

    Article  CAS  PubMed  Google Scholar 

  16. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  17. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–85

    CAS  PubMed  Google Scholar 

  18. Gao XD, Kaigorodov V, Jigami Y (1999) YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem 274:21450–21456

    Article  CAS  PubMed  Google Scholar 

  19. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  20. Green P (1996) Documentation for Phrap (available at http://bozeman.mbt.washington.edu)

  21. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  22. Hawkins TL, O’Connor-Morin T, Roy A, Santillan C (1994) DNA purification and isolation using a solid-phase. Nucleic Acids Res 22:4543–4544

    CAS  PubMed  Google Scholar 

  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–5

    Article  CAS  PubMed  Google Scholar 

  24. Kalsi G, Etzler ME (2000) Localization of a Nod factor-binding protein in legume roots and factors influencing its distribution and expression. Plant Physiol 124:1039–1048

    Article  CAS  PubMed  Google Scholar 

  25. Kimura M (1983) The Neutral theory of molecular evolution. Cambridge University Press, London

  26. Komoszynski M, Wojtczak A (1996) Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochim Biophys Acta 1310:233–241

    Article  CAS  PubMed  Google Scholar 

  27. Korber B (2002a) SNAP.pl—Synonymous NonSynonymous Analysis Program (available at http://hiv-web.lanl.gov/content/hiv-db/SNAP/README.html)

  28. Korber B (2002b) HIV Signature and Sequence Variation Analysis. In: Learn GH (ed) Computational analysis of HIV molecular sequences. Kluwer Academic Publishers, Dordrecht, pp 55–72

  29. Lamblin AF, Crow JA, Johnson JE, Silverstein KA, Kunau TM, Kilian A, Benz D, Stromvik M, Endre G, VandenBosch KA, Cook DR, Young ND, Retzel EF (2003) MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucleic Acids Res 31:196–201

    Article  CAS  PubMed  Google Scholar 

  30. Lew RR, Dearnaley JDW (2000) Extracellular nucleotide effects on the electrical properties of growing Arabidopsis thaliana root hairs. Plant Sci 153:1–6

    Article  CAS  Google Scholar 

  31. Liu Y-G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540

    CAS  PubMed  Google Scholar 

  32. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  33. Maddison WP, Maddison DR (2002) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Mass.

  34. Marcus AJ, Safier LB (1993) Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J 7:516–522

    CAS  PubMed  Google Scholar 

  35. Nam Y-W, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Gen 98:638–646

    CAS  Google Scholar 

  36. Navarro-Gochicoa MT, Camut S, Niebel A, Cullimore JV (2003) Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or Nod factors. Plant Physiol 131:1124–1136

    Article  CAS  PubMed  Google Scholar 

  37. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  38. Roberts NJ, Brigham J, Wu B, Murphy JB, Volpin H, Phillips DA, Etzler ME (1999) A Nod factor-binding lectin is a member of a distinct class of apyrases that may be unique to the legumes. Mol Gen Genet 262:261–267

    CAS  PubMed  Google Scholar 

  39. Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    CAS  PubMed  Google Scholar 

  40. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Res 8:311–8

    CAS  PubMed  Google Scholar 

  41. Sawyer SA (1999) GENECONV: a computer package for the statistical detection of gene conversion (available at http://www.math.wustl.edu/~sawyer)

  42. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–586

    CAS  PubMed  Google Scholar 

  44. Stekel DJ, Git Y, Falciani F (2000) The comparison of gene expression from multiple cDNA libraries. Genome Res 10:2055–2061

    Article  CAS  PubMed  Google Scholar 

  45. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Mass.

  46. Tang W, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154

    Article  CAS  PubMed  Google Scholar 

  47. Thomas C, Sun Y, Naus K, Lloyd A, Roux SJ (1999) Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol 119:543–551

    Article  CAS  PubMed  Google Scholar 

  48. Thomas C, Rajagopal A, Windsor B, Dudler R, Lloyd A, Roux SJ (2000) A role for ectophosphatase in xenobiotic resistance. Plant Cell 12:519–533

    Google Scholar 

  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  50. Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Doug Cook and Dong-jin Kim for providing the M. truncatula BAC clones, and to Julie Cullimore for sharing her results prior to publication. This work was supported in part by a grant (DE-FG02-97ER20260) to GS from the United States Department of Energy, Basic Energy Biosciences Program, and by a USDA National Needs fellowship to SC

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Stacey.

Additional information

Communicated by A. Kondorosi

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cannon, S.B., McCombie, W.R., Sato, S. et al. Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol Genet Genomics 270, 347–361 (2003). https://doi.org/10.1007/s00438-003-0928-x

Download citation

Keywords

  • Apyrase
  • Nodulation
  • Medicago truncatula
  • Glycine max
  • Lotus japonicus