Skip to main content
Log in

Mak5p, which is required for the maintenance of the M1 dsRNA virus, is encoded by the yeast ORF YBR142w and is involved in the biogenesis of the 60S subunit of the ribosome

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In this study, we show that the Saccharomyces cerevisiae ORF YBR142w, which encodes a putative DEAD-box RNA helicase, corresponds to MAK5. The mak5-1 allele is deficient in the maintenance of the M1 dsRNA virus, resulting in a killer minus phenotype. This allele carries two mutations, G218D in the conserved ATPase A-motif and P618S in a non-conserved region. We have separated these mutations and shown that it is the G218D mutation that is responsible for the killer minus phenotype. Mak5p is an essential nucleolar protein; depletion of the protein leads to a reduction in the level of 60S ribosomal subunits, the appearance of half-mer polysomes, and a delay in production of the mature 25S and 5.8S rRNAs. Thus, Mak5p is involved in the biogenesis of 60S ribosomal subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2.
Fig. 3A, B.
Fig. 4A, B.
Fig. 5A, B.
Fig. 6.

Similar content being viewed by others

References

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    CAS  PubMed  Google Scholar 

  • Becam AM, Nasr F, Racki WJ, Zagulski M, Herbert CJ (2001) Ria1p (Ynl163c), a protein similar to elongation factors 2, is involved in the biogenesis of the 60S subunit of the ribosome in Saccharomyces cerevisiae. Mol Genet Genomics 266:454–462

    Article  CAS  PubMed  Google Scholar 

  • Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133

    Article  CAS  PubMed  Google Scholar 

  • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Google Scholar 

  • Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science 275:1468–1471

    CAS  PubMed  Google Scholar 

  • Dalbadie-McFarland G, Abelson J (1990) JPRP5: a helicase-like protein required for mRNA splicing in yeast. Proc Natl Acad Sci USA 87:4236–4240

    CAS  PubMed  Google Scholar 

  • De la Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:5201–5206

    Article  PubMed  Google Scholar 

  • De la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    Article  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    CAS  PubMed  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429

    CAS  Google Scholar 

  • Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10:105–15

    CAS  PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    CAS  PubMed  Google Scholar 

  • Kressler D, de la Cruz J, Rojo M, Linder P (1998) Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 18:1855–65

    CAS  PubMed  Google Scholar 

  • Le Gouill C, Dery CV (1991) A rapid procedure for the screening of recombinant plasmids. Nucleic Acids Res 19:6655

    PubMed  Google Scholar 

  • Linder P, Stutz F (2001) mRNA export: travelling with DEAD box proteins. Curr Biol 11:961–963

    Article  Google Scholar 

  • Linder P, Tanner NK, Banroques J (2001) From RNA helicases to RNPases. Trends Biochem Sci 26:339–341

    Article  CAS  PubMed  Google Scholar 

  • Milkereit P, Kuhn H, Gas N, Tschochner H (2003) The pre-ribosomal network. Nucleic Acids Res 31:799–804

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent chaperone in group I intron splicing. Cell 109:769–779

    CAS  PubMed  Google Scholar 

  • Mortimer RK, Contopoulou CR, King JS (1992) Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast 8:817–902

    CAS  PubMed  Google Scholar 

  • Nielsen PJ, Trachsel H (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J 7:2097–2105

    CAS  PubMed  Google Scholar 

  • Nissan TA, Bassler J, Petfalski E, Tollervey D, Hurt E (2002) 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J 21:5539–5547

    Article  CAS  PubMed  Google Scholar 

  • Ohtake Y, Wickner RB (1995) Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol Cell Biol 15:2772–2781

    CAS  PubMed  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245

    PubMed  Google Scholar 

  • Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factoreIF-4A. EMBO J 11:2643–2654

    CAS  PubMed  Google Scholar 

  • Racki WJ, Becam AM, Nasr F, Herbert CJ (2000) Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. EMBO J 19:4524–32

    CAS  PubMed  Google Scholar 

  • Ridley SP, Sommer SS, Wickner RB (1984) Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 Double-Stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol Cell Biol 4:761–770

    CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring harbor, N.Y.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6:283–291

    CAS  PubMed  Google Scholar 

  • Schwer B (2001) A new twist on RNA helicases: DexH/D box proteins as RNPases. Nat Struct Biol 8:113–116

    Article  CAS  PubMed  Google Scholar 

  • Tanner NK, Linder P (2001) DexD/H Box RNA helicase: from genetic motors to specific dissociation functions. Mol Cell 8:251–262

    CAS  PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    PubMed  Google Scholar 

  • Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 60:250–265

    CAS  PubMed  Google Scholar 

  • Wickner RB, Leibowitz MJ (1976) Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: the killer character of yeast. J Mol Biol 105:427–434

    CAS  PubMed  Google Scholar 

  • Zagulski M, Becam AM, Grzybowska E, Lacroute F, Migdalski A, Slonimski PP, Sokolowska B, Herbert CJ (1994) The sequence of 12.5 kb from the right arm of chromosome II predicts a new N-terminal sequence for the IRA1 protein and reveals two new genes, one of which is a DEAD-box helicase. Yeast 10:1227–1234

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. F. Lacroute for many helpful discussions, Prof. R. B. Wickner for providing strains and Dr. O. Gadal for the Nop1dsRED construction. This work was supported by grants from the Polish-French Center for Plant Biotechnology, the CNRS and Grant No. 6PO4A00919 from the State Committee for Scientific Research, Poland. D.K. was supported by a grant from the Swiss National Science Foundation to P. Linder

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Herbert.

Additional information

Communicated by F. Messenguy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagulski, M., Kressler, D., Bécam, AM. et al. Mak5p, which is required for the maintenance of the M1 dsRNA virus, is encoded by the yeast ORF YBR142w and is involved in the biogenesis of the 60S subunit of the ribosome. Mol Genet Genomics 270, 216–224 (2003). https://doi.org/10.1007/s00438-003-0913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0913-4

Keywords

Navigation