Skip to main content
Log in

Genetic evidence for a role of phospholipase C at the budding yeast kinetochore

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Δ cells, Plc1p is not required for the spindle checkpoint. However, plc1Δ cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Δ cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G2/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6A, B.

Similar content being viewed by others

References

  • Akhtar N, Pahlman AK, Larson K, Corbett AH, Adler L (2000) SGD1 encodes an essential nuclear protein of Saccharomyces cerevisiae that affects expression of the GPD1 gene for glycerol 3-phosphate dehydrogenase. FEBS Lett 483:87–92

    CAS  PubMed  Google Scholar 

  • Amon A (1999) The spindle checkpoint. Curr Opin Genet Dev 9:69–75

    CAS  PubMed  Google Scholar 

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    CAS  PubMed  Google Scholar 

  • Bardin AJ, Visintin R, Amon A (2000) A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102:21–31

    CAS  PubMed  Google Scholar 

  • Bloecher A, Venturi GM, Tatchell K (2000) Anaphase spindle position is monitored by the BUB2 checkpoint. Nat Cell Biol 2:556–558

    Article  CAS  PubMed  Google Scholar 

  • Boronenkov IV, Loijens JC, Umeda M, Anderson RA (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9:3547–3560

    CAS  PubMed  Google Scholar 

  • Cheeseman IM, Brew C, Wolyniak M, Desai A, Anderson S, Muster N, Yates JR, Huffaker TC, Drubin DG, Barnes G (2001a) Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J Cell Biol 155:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Enquist-Newman M, Muller-Reichert T, Drubin DG, Barnes G (2001b) Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J Cell Biol 152:197–212

    Google Scholar 

  • Cheeseman IM, Drubin DG, Barnes G (2002) Simple centromere,complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157:199–203

    Article  CAS  PubMed  Google Scholar 

  • Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA, Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248:765–770

    CAS  PubMed  Google Scholar 

  • Cumberledge S, Carbon J (1987) Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212

    CAS  PubMed  Google Scholar 

  • Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10:3207–3214

    CAS  PubMed  Google Scholar 

  • Divecha N, Banfic H, Irvine RF (1993) Inositides and the nucleus and inositides in the nucleus. Cell 74:405–407

    CAS  PubMed  Google Scholar 

  • Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P (1993) Identification of essential components of the Saccharomyces cerevisiae kinetochore. Cell 73:761–774

    CAS  PubMed  Google Scholar 

  • Faenza I, Matteucci A, Manzoli L, Billi AM, Aluigi M, Peruzzi D, Vitale M, Castorina S, Suh PG, Cocco L (2000) A role for nuclear phospholipase C β1 in cell cycle control. J Biol Chem 275:30520–30524

    CAS  PubMed  Google Scholar 

  • Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244

    CAS  PubMed  Google Scholar 

  • Gardner RD, Poddar A, Yellman C, Tavormina PA, Monteagudo MC, Burke DJ (2001) The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics 157:1493–1502

    CAS  PubMed  Google Scholar 

  • Gaudet A, Fitzgerald-Hayes M (1987) Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol Cell Biol 7:68–75

    CAS  PubMed  Google Scholar 

  • Goh PY, Kilmartin JV (1993) NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Cell Biol 121:503–512

    CAS  PubMed  Google Scholar 

  • Hardwick KG, Li R, Mistrot C, Chen R-H, Dann P, Rudner A, Murray AW (1999) Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Genetics 152:509–518

    CAS  PubMed  Google Scholar 

  • He X, Rines DR, Espelin CW, Sorger PK (2001) Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106:195–206

    CAS  PubMed  Google Scholar 

  • Hegemann JH, Fleig UN (1993) The centromere of budding yeast. BioEssays 15:451–460

    Google Scholar 

  • Hegemann JH, Shero JH, Cottarel G, Philippsen P, Hieter P (1988) Mutational analysis of the centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 8:2523–2535.

    CAS  PubMed  Google Scholar 

  • Hirschhorn JN, Brown SA, Clark CD, Winston F (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6:2288–2298

    CAS  PubMed  Google Scholar 

  • Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921

    CAS  PubMed  Google Scholar 

  • Hoyt MA (2000) Exit from mitosis: spindle pole power. Cell 102:267–270

    CAS  PubMed  Google Scholar 

  • Hoyt MA, Totis L, Roberts BTS (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    CAS  PubMed  Google Scholar 

  • Janke C, Ortiz J, Lechner A, Shevchenko A, Magiera MM, Scramm C, Schiebel E (2001) The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J 20:777–791

    Google Scholar 

  • Janke C, Ortiz J, Tanaka TU, Lechner J, Schiebel E (2002) Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J 21:181–193

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury J, Koshland D (1991) Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell 66:483–495

    CAS  PubMed  Google Scholar 

  • Koshland D, Kent JC, Harttwell LH (1985) Genetic analysis of the mitotic transmission of minichromosomes. Cell 40:393–403

    Google Scholar 

  • Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell LH (1987) A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48:801–812

    CAS  PubMed  Google Scholar 

  • Lechner J, Carbon J (1991) A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725

    CAS  PubMed  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    CAS  PubMed  Google Scholar 

  • Li Y, Bacchant J, Alcasabas AA, Wang Y, Qin J, Elledge SJ (2002) The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev 16:183–197

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Choi JH, Hasek J, DeLillo N, Lou W, Vancura A (2000) Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol Cell Biol 20:3597–3607

    CAS  PubMed  Google Scholar 

  • Lin H, de Carvalho P, Kho D, Tai C-Y, Pierre P, Fink GR, Pellman D (2001) Polyploids require Bik1 for kinetochore-microtubule attachment. J Cell Biol 155:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Nguyen P, Vancura A (2002) Phospholipase C interacts with Sgd1p and is required for expression of GPD1 and osmoresistance in Saccharomyces cerevisiae. Mol Genet Genomics 267:313–320

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L (1992) Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature. 358:242–245.

    Google Scholar 

  • Matteucci A, Faenza I, Gilmour RS, Manzoli L, Billi AM, Peruzzi D, Bavelloni A, Rhee SG, Cocco L (1998) Nuclear but not cytoplasmic phospholipase C beta 1 inhibits differentiation of erythroleukemia cells. Cancer Res 58:5057–5060

    CAS  PubMed  Google Scholar 

  • McGrew J, Diehl B, Fitzgerald-Hayes M (1986) Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 6:530–538

    CAS  PubMed  Google Scholar 

  • Measday V, Hailey DW, Pot I, Givan S, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16:101–113

    Article  CAS  PubMed  Google Scholar 

  • Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6:793–807

    CAS  PubMed  Google Scholar 

  • Meluh PB, Yang PR, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613

    CAS  PubMed  Google Scholar 

  • Middleton K, Carbon J (1994) KAR3-encoded kinesin is a minus-end directed motor that functions with centromere binding proteins (CBF3) on an in vitro yeast kinetochore. Proc natl Acad Sci USA 91:7212–7216

    CAS  PubMed  Google Scholar 

  • Miller RK, Heller KK, Frisen L, Wallack DL, Loayza D, Gammie AE, Rose MD (1998) The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol Biol Cell 9:2051–2068

    CAS  PubMed  Google Scholar 

  • Ng R, Carbon J (1987) Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol Cell Biol 7:4522–4534

    CAS  PubMed  Google Scholar 

  • Nicklas RB, Ward SC, Gorbsky GJ (1995) Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol 130:929–939

    CAS  PubMed  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  CAS  PubMed  Google Scholar 

  • Ortiz J, Stemman O, Rank S, Lechner J (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13:1140–1155

    CAS  PubMed  Google Scholar 

  • Pangilinan F, Spencer F (1996) Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol Biol Cell 7:1195–208

    CAS  PubMed  Google Scholar 

  • Payne WE, Fitzgerald-Hayes M (1993) A mutation in PLC1, a candidate phosphainositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol Cell Biol 13:4351–4364

    CAS  PubMed  Google Scholar 

  • Payrastre B, Nievers M, Boonstra J, Breton M, Verkleij AJ, Van Bergen en Henegouwen PM (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem 267:5078–5084

    CAS  PubMed  Google Scholar 

  • Pereira G, Hofken T, Grindlay J, Manson C, Schiebel E (2000) The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol Cell 6:1-10

    CAS  PubMed  Google Scholar 

  • Pinto I, Winston F (2000) Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J 19:1598–1612

    Article  CAS  PubMed  Google Scholar 

  • Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130:941–948

    Google Scholar 

  • Saunders M, Fitzgerald-Hayes M, Bloom K (1988) Chromatin structure of altered yeast centromeres. Proc Natl Acad Sci USA 85:175–179

    CAS  PubMed  Google Scholar 

  • Saunders MJ, Yeh E, Grunstein M, Bloom K (1990) Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres. Mol Cell Biol 10:5721–5727

    CAS  PubMed  Google Scholar 

  • Sassoon I, Severin FF, Andrews PD, Taba M-R, Kaplan KB, Ashford AJ, Stark MJR, Sorger PK, Hyman AA (1999) Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev 13:545–555

    CAS  PubMed  Google Scholar 

  • Schwartz K, Richards K, Botstein D (1997) BIM1 encodes a microtubule-binding protein in yeast. Mol Biol Cell 8:2677–2691

    CAS  PubMed  Google Scholar 

  • Severin F, Habermann B, Huffaker T, Hyman T (2001) Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 153:435–442

    Article  CAS  PubMed  Google Scholar 

  • Sharp JA, Franco AA, Osley MA, Kaufman PD (2002) Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 16:85–100

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3-21

    CAS  PubMed  Google Scholar 

  • Skibbens RV, Hieter P (1998) Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 32:307–337

    CAS  PubMed  Google Scholar 

  • Smith MM, Yang P, Santisteban MS, Boone PW, Goldstein AT, Megee PC (1996) A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission. Mol Cell Biol 16:1017–1026

    CAS  PubMed  Google Scholar 

  • Spencer F, Hieter P (1992) Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:8908–8912

    CAS  PubMed  Google Scholar 

  • Sorger PK, Severin FF, Hyman AA (1994) Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J Cell Biol 127:995–1008

    CAS  PubMed  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    CAS  PubMed  Google Scholar 

  • Tavormina PA, Burke DJ (1998) Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 148:1701–1713

    CAS  PubMed  Google Scholar 

  • Tsuchiya E, Hosotani T, Miyakawa T (1998) A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodelling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res 26:3286–3292

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Burke DJ (1995) Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15:6838–6844

    CAS  PubMed  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360

    CAS  PubMed  Google Scholar 

  • Winey M, Mamay CL, O'Toole ET, Mastronarde DN, Giddings TH Jr, McDonald KL, McIntosh JR (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129:1601–15

    CAS  PubMed  Google Scholar 

  • Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED, Wang W (2000) The human SWI/SNF-B chromatin remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA 97:13015–13020

    Article  CAS  PubMed  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives IB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Kahana JA, Silver PA, Morphew MK, McIntosh JR, Fitch IT, Carbon J, Saunders WS (1999) Slk19p is a centromere protein that functions to stabilize mitotic spindles. J Cell Biol 146:415–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (1 R15 GM62183-01) and the American Cancer Society (RSG-01-145-01-CCG) to A.V. We thank Drs. Elledge, Huffaker, Hyman, Kaplan, Koshland, Meluh, Murray, and Saunders, for strains and plasmids, and Dr. Vancurova for critical reading of the manuscript and helpful comments. The work has been carried out in compliance with current U.S. laws governing genetic experimentation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vancura.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLillo, N., Romero, C., Lin, H. et al. Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Gen Genomics 269, 261–270 (2003). https://doi.org/10.1007/s00438-003-0832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0832-4

Keywords

Navigation