Skip to main content
Log in

The GATE retrotransposon in Drosophila melanogaster: mobility in heterochromatin and aspects of its expression in germline tissues

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A full-length copy of the retrotransposon GATE was identified as an insertion in the tandemly repeated, heterochromatic, Stellate genes, which are expressed in the testis of Drosophila melanogaster. Sequencing of this heterochromatic GATE copy revealed that it is closely related to the BEL retrotransposon, a representative of the recently defined BEL -like group of LTR retrotransposons. This copy contains identical LTRs, indicating that the insertion is a recent event. By contrast, the euchromatic part of the D. melanogaster genome contains only profoundly damaged GATE copies or fragments of the transposon. The preferential localization of GATE sequences in heterochromatin was confirmed for the other species in the melanogaster subgroup. The level of GATE expression is dramatically increased in ovaries, but not in testes, of spn-E 1 homozygous flies. We speculate that spn-E is involved in the silencing of GATE via an RNA interference mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6A–C.

Similar content being viewed by others

References

  • Abe H, Ohbayashi F, Sugasaki T, Kanechara M, Terada T, Shimada T, Kawai S, Mita K, Kanamori Y, Yamamoto M-T, Oshiki T (2001) Two novel Pao-like retrotransposons ( Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements. Mol Genet Genomics 265:375–385

    Article  CAS  PubMed  Google Scholar 

  • Aeby P, Spicher A, de Chastonay Y, Muller F, Tobler H (1986) Structure and genomic organization of proretrovirus-like elements partially eliminated from the somatic genome of Ascaris lumbricoides. EMBO J 5:3353–3360

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova IR, Lyubomirskaya NV, Ilyin YuV (1995) Drosophila Retrotransposons. RG Landes, Austin, Tex.

  • Biessmann H, Walter MF, Le D, Chuan S, Yao JG (1999) Moose, a new family of LTR-retrotransposons in the mosquito Anopheles gambiae. Insect Mol Biol 8:201–212

    CAS  PubMed  Google Scholar 

  • Bowen NJ, McDonald JF (2001) Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genom Res 11:1527–1540

    Article  CAS  Google Scholar 

  • Charlesworth B, Sniegovski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    CAS  PubMed  Google Scholar 

  • Cizeron G, Lemeunier F, Loevenbruck C, Brehm A, Biemont C (1998) Distribution of the retrotransposable element 412 in Drosophila melanogaster. Mol Biol Evol 15:1589–1599

    CAS  PubMed  Google Scholar 

  • Cook JM, Martin J, Lewin A, Sinden RE, Tristem M (2000) Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao -like retrotransposons. Insect Mol Biol 9:109–117

    Article  CAS  PubMed  Google Scholar 

  • Davis PS, Judd BH (1995) Nucleotide sequence of the transposable element, Bel, of Drosophila melanogaster. Dros Inf Service 76:134–136

    Google Scholar 

  • Di Nocera PP, Graziani F, Lavorgna G (1986) Genomic and structural organization of Drosophila melanogaster G elements. Nucleic Acids Res 14:675–691

    PubMed  Google Scholar 

  • Dimitri P (1997) Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100:85–93

    CAS  Google Scholar 

  • Djikeng A, Shi H, Tschui C, Ullu E (2001) RNA interference in Typanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24–26-nucleotide RNAs. RNA 7:1522–1530

    CAS  PubMed  Google Scholar 

  • Doolittle RF, Feng D-F, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Quart Rev Biol 64:1–30

    CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–33

    PubMed  Google Scholar 

  • Felder H, Herzceg A, de Chastonay Y, Aeby P, Tobler H, Müller F (1994) Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene 149:219–225

    Article  CAS  PubMed  Google Scholar 

  • Frame IG, Cutfield JF, Poulter RTM (2001) New BEL -like LTR-retrotransposons in Fugu rubripes,C aenorhabditis elegans, and Drosophila melanogaster. Gene 263:219–230

    Article  CAS  PubMed  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comp Appl Biosci 12:543–548

    Google Scholar 

  • Gillespie DE, Berg CA (1995) homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DE-H family of RNA-depended ATPases. Genes Dev 9:2495–2508

    CAS  PubMed  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  CAS  PubMed  Google Scholar 

  • Ilyin YV, Chmeliauskaite VG, Georgiev GP (1980) Double-stranded sequences in RNA of Drosophila melanogaster: relationship to mobile dispersed genes. Nucleic Acids Res 8:3439–3457

    CAS  PubMed  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–141

    CAS  PubMed  Google Scholar 

  • Khan E, Mack JP, Katz RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860

    CAS  PubMed  Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338

    CAS  PubMed  Google Scholar 

  • Lankenau S, Corces VG, Lankenau D-H (1994) Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. Mol Cell Biol 14:1764–1775

    CAS  PubMed  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotansposons. J Virol 73:5186–5190

    CAS  PubMed  Google Scholar 

  • Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:1187–1197

    CAS  Google Scholar 

  • McClure MA (1991) Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol 8:835–856

    CAS  PubMed  Google Scholar 

  • Minchiotti G, Countursi C, Graziani F, Gargiulo G, di Nocera PP (1994) Expression of Drosophila melanogaster F elements in vivo. Mol Gen Genet 245:152–159

    CAS  PubMed  Google Scholar 

  • Nurminsky DI (1993) Two subfamilies MDG1retrotransposon with different evolutionary histories in D melanogaster. J Mol Evol 37:496–503

    CAS  PubMed  Google Scholar 

  • Nurminsky DI, Shevelyov YY, Nuzhdin SV, Gvozdev VA (1994) Structure, molecular evolution and maintenance of copy number of extended repeated structure in the X-heterochromatin of Drosophila melanogaster. Chromosoma 103:277–285

    Google Scholar 

  • Ogura K, Takechi S, Nakayama T, Yamamoto MT (1996) Molecular structure of the transposable element ninja in Drosophila simulans.Genes Genet Syst 71:1–8

    CAS  PubMed  Google Scholar 

  • Pardue Ml, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL (1996) Drosophila telomeres: new views on chromosome evolution. Trends Genet 12:48–52

    CAS  PubMed  Google Scholar 

  • Pasyukova EG, Nuzhdin SV, Li W, Flavell AJ (1997) Germ line transposition of the copia retrotransposon in Drosophila melanogaster is restricted to males by tissue-specific control of copia RNA levels. Mol Gen Genet 255:115–124

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Taylor WR (1987) A structural model for the retroviral proteases. Nature 329:351–354

    CAS  PubMed  Google Scholar 

  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marcheti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sharp PA (2001) RNA interference -- 2001. Genes Dev 15:485–490

    CAS  PubMed  Google Scholar 

  • Shevelyov YY (1993) Aurora, a non-mobile retrotransposon in Drosophila melanogaster heterochromatin. Mol Gen Genet 239:205–208

    CAS  PubMed  Google Scholar 

  • Shevelyov YY, Balakireva MD, Gvozdev VA (1989) Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia -like elements ( MDG1). Chromosoma 98:117–122

    PubMed  Google Scholar 

  • Stapleton W, Das S, McKee BD (2001) A role of the Drosophila homeless gene in repression of Stellate in male meiosis. Chromosoma 110:228–240

    CAS  PubMed  Google Scholar 

  • Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1gene, RNA interference, and transposon silencing in C. elegans.Cell 99:123–132

    CAS  PubMed  Google Scholar 

  • Tautz D, Pfeifle C (1989) A non radioactive in situ hybridization method for localization of specific RNAs in Drosophila embryos reveals a translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    CAS  PubMed  Google Scholar 

  • Tulin AV, Kogan GL, Filipp D, Balakireva MD, Gvozdev VA (1997) Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and molecular evolution. Genetics 146:253–262

    CAS  PubMed  Google Scholar 

  • Vaury C, Bucheton A, Pellison A (1989) The β-heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98:215–224

    CAS  PubMed  Google Scholar 

  • Wu-Scharf D, Jeong B, Zhang C, Cerutti H (2000) Transgene and transposon silencing in Chlamydomonas reinhardtii DEAH-box RNA helicase. Science 290:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  Google Scholar 

  • Xiong Y, Burke WD, Eickbush TH (1993) Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucleic Acids Res 21:2117–2123

    CAS  PubMed  Google Scholar 

  • Zhao D, Bownes M (1998) The RNA product of the Doc retrotransposon is localized on the Drosophila oocyte cytoskeleton. Mol Gen Genet 257:497–504

    Article  CAS  PubMed  Google Scholar 

  • Zhimulev IF (1996) Morphology and structure of polytene chromosomes. Adv Genet 34:1–497

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. B. Evgen'ev and B. D. McKee for the gifts of various species of flies. This work was supported by grants from the Russian Foundation for Basic Research (N 00-15-97896, 01-04-22001, 01-04-48514, 02-04-48498, and PICS N1191)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gvozdev.

Additional information

Communicated by G. P. Georgiev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, G.L., Tulin, A.V., Aravin, A.A. et al. The GATE retrotransposon in Drosophila melanogaster: mobility in heterochromatin and aspects of its expression in germline tissues. Mol Gen Genomics 269, 234–242 (2003). https://doi.org/10.1007/s00438-003-0827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0827-1

Keywords

Navigation