Skip to main content

Advertisement

Log in

Construction of a BAC library and generation of BAC end sequence-tagged connectors for genome sequencing of the African malaria mosquito Anopheles gambiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A Bacterial Artificial Chromosome (BAC) genomic DNA library of Anopheles gambiae, the major human malaria vector in sub-Saharan Africa, was constructed and characterized. This library (ND-TAM) is composed of 30,720 BAC clones in eighty 384-well plates. The estimated average insert size of the library is 133 kb, with an overall genome coverage of approximately 14-fold. The ends of approximately two-thirds of the clones in the library were sequenced, yielding 32,340 pair-mate ends. A statistical analysis (G-test) of the results of PCR screening of the library indicated a random distribution of BACs in the genome, although one gap encompassing the white locus on the X-chromosome was identified. Furthermore, combined with another previously constructed BAC library (ND-1), ~2,000 BACs have been physically mapped by polytene chromosomal in situ hybridization. These BAC end pair mates and physically mapped BACs have been useful for both the assembly of a fully sequenced A. gambiae genome and for linking the assembled sequence to the three polytene chromosomes. This ND-TAM library is now publicly available at both http://www.malaria.mr4.org/mr4pages/index.html/ and http://hbz.tamu.edu/, providing a valuable resource to the mosquito research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Adams MD, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Balter M (2001) Malaria research. Sequencing set for dreaded mosquito. Science 291:1873

    CAS  Google Scholar 

  • Besansky NJ, Powell JR (1992) Reassociation kinetics of Anopheles gambiae (Diptera: Culicidae) DNA. J Med Entomol 29:125–128

    CAS  PubMed  Google Scholar 

  • Besansky NJ, Bedell JA, Benedict MO, Mukabayire O, Hilfiker D, Collins FH (1995) Cloning and characterization of the white gene from Anopheles gambiae. Insect Mol Biol 4:217–231

    CAS  PubMed  Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129–136

    CAS  PubMed  Google Scholar 

  • Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J, Guillet P (1999) Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ 77:230–234

    CAS  PubMed  Google Scholar 

  • Collins FH, Paskewitz SM (1995) Malaria: current and future prospects for control. Annu Rev Entomol 40:195–219

    Article  CAS  PubMed  Google Scholar 

  • Collins FH, Kamau L, Ranson HA, Vulule JM (2000) Molecular entomology and prospects for malaria control. Bull World Health Organ 78:1412–1423

    CAS  PubMed  Google Scholar 

  • Dimopoulos G, et al. (2000) Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc Natl Acad Sci USA 97:6619–6624

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194.

    CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Frijters ACJ, Zhang Z, van Damme M, Wang G-L, Ronald PC, Michelmore RW (1997) Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce. Theor Appl Genet 94:390–399

    CAS  Google Scholar 

  • Green ED, Olson MV (1990) Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci USA 87:1213–1217

    CAS  PubMed  Google Scholar 

  • Hoffman SL, Subramanian GM, Collins FH, Venter JC (2002) Plasmodium, human and Anopheles genomics and malaria. Nature 415:702–709

    Article  CAS  PubMed  Google Scholar 

  • Holt RA, et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  CAS  PubMed  Google Scholar 

  • Hoskins RA, et al (2000) A BAC-based physical map of the major autosomes of Drosophila melanogaster. Science 287:2271–2274

    CAS  PubMed  Google Scholar 

  • James AA, Beerntsen BT, Capurro M, Coates CJ, Coleman J, Jasinskiene N, Krettli AU (1999) Controlling malaria transmission with genetically-engineered, Plasmodium -resistant mosquitoes: milestones in a model system. Parassitologia 41:461–471

    CAS  PubMed  Google Scholar 

  • Kumar V, Collins FH (1994) A technique for nucleic acid in situ hybridization to polytene chromosomes of mosquitoes in the Anopheles gambiae complex. Insect Mol Biol 3:41–47

    CAS  PubMed  Google Scholar 

  • Lines JD, Curtis CF (1984) Genetic linkage between malathion and dieldrin resistance in Anopheles arabiensis. Can J Genet Cytol 26:646–650

    CAS  PubMed  Google Scholar 

  • Mahairas GG, et al (1999) Sequence-tagged connectors: A sequence approach to mapping and scanning the human genome. Proc Natl Acad Sci USA 96:9739–9744

    Article  CAS  PubMed  Google Scholar 

  • Mukabayire O, Besansky NJ (1996) Distribution of T1, Q, Pegasus and mariner transposable elements on the polytene chromosomes of PEST, a standard strain of Anopheles gambiae. Chromosoma 104:585–595

    Article  CAS  PubMed  Google Scholar 

  • Mukabayire O, Cornel AJ, Dotson EM, Collins FH (1996) Besansky NJ (1996) The tryptophan oxygenase gene of Anopheles gambiae. Insect Biochem Mol Biol 26:525–528

    Article  CAS  PubMed  Google Scholar 

  • Myers EW, et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Ranson H, Jensen B, Wang X, Prapanthadara L, Hemingway J, Collins FH (2000) Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 9:499–507

    Article  CAS  PubMed  Google Scholar 

  • Romans P, Black WC, Sakai RK, Gwadz RW (1999) Linkage of a gene causing malaria refractoriness to Diphenol oxidase-A2 on chromosme 3 of Anopheles gambiae. Am J Trop Med Hyg 60:22–29

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    CAS  PubMed  Google Scholar 

  • Thomasova D, Ton LQ, Copley RR, Zdobnov EM, Wang X, Hong YS, Sim C, Bork P, Kafatos FC, Collins FH (2002) Comparative genomic analysis in the region of a major Plasmodium -refractoriness locus of Anopheles gambiae. Proc Natl Acad Sci USA 99:8179–8184

    Article  CAS  PubMed  Google Scholar 

  • Torre A (1997) Polytene chromosome preparation from anopheline mosquitoes. In: Crampton JM, Beard CB, Louisand C (eds) The Molecular biology of insect disease vectors: a methods manual. Chapman and Hall, New York, pp 329–336

    Google Scholar 

  • Venter JC, Smith HO, Hood L (1996) A new strategy for genome sequencing. Nature 381:364–366

    CAS  PubMed  Google Scholar 

  • Venter JC, et al. (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • WHO (1998) Fact Sheet No. 94. World Health Organization, Geneva

  • Zhang H-B (2000) Construction and manipulation of large-insert bacterial clone libraries. Texas A&M University Press, College Station, Tex.

  • Zhao S, et al. (2001) Mouse BAC ends quality assessment and sequence analyses. Genome Res 11:1736–1745

    Article  PubMed  Google Scholar 

  • Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC (1996) An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143:941–952

    CAS  PubMed  Google Scholar 

  • Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 276:425–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kern, R. Sengupta, and J. Niedbalski for technical assistance and the TIGR sequencing facility for sequencing ND-TAM BAC ends. We are also grateful to M. Crystal for data analysis. This work was supported by a grant (R01-AI44273) and cooperative agreement (U01-AI48846) from NIH/NIAID to FHC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Collins.

Additional information

Communicated by G. Reuter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y.S., Hogan, J.R., Wang, X. et al. Construction of a BAC library and generation of BAC end sequence-tagged connectors for genome sequencing of the African malaria mosquito Anopheles gambiae . Mol Gen Genomics 268, 720–728 (2003). https://doi.org/10.1007/s00438-003-0813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0813-7

Keywords

Navigation