Skip to main content
Log in

Mkp1 and Mkp2, two MAPKAP-kinase homologues in Schizosaccharomyces pombe, interact with the MAP kinase Sty1

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Mkp1 (MAPKAP kinase Schizosaccharomyces p ombe 1) and Mkp2 are two members from fission yeast of the sub-class of putative MAPK-activated protein kinases in yeasts, the other known members being Rck1 and Rck2 from Saccharomyces cerevisiae. The Mkp1 protein is readily co-immunoprecipitated with Sty1 from S. pombe extracts; Mkp2 shows a weaker interaction with Sty1. In mkp1 mutants, conjugation and meiosis proceed more readily and rapidly than in wild-type cells, in analogy to what was previously found for S. cerevisiae rck1 mutants. Conversely, overexpression of mkp1 + delays meiosis. Mkp1 is phosphorylated in vivo in a sty1 +-dependent manner; this modification is removed when cells are starved for nitrogen, a condition that is conducive to entry into stationary phase and meiosis. Overexpression of mkp1 +, like a sty1 mutation, also causes vegetative cells to elongate. The level of Mkp1 phosphorylation drops as cells enter mitosis. We have localised Mkp1 to the cytoplasm, excluded from the nucleus, in vegetative cells. The Mkp1 protein accumulates in zygotic asci and is concentrated within spores. The mkp2 + gene has no noticeable impact on meiosis. Mkp2 is excluded from the nucleus in vegetative cells, and is concentrated at the septa of dividing cells. Mkp2 does not accumulate in meiotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A–C.
Fig. 3.
Fig. 4A, B.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Bilsland-Marchesan E, Ariño J, Saito H, Sunnerhagen P, Posas F (2000) Rck2 kinase is a substrate for the osmotic-stress activated MAP kinase Hog1. Mol Cell Biol 20:3887–3895

    Article  CAS  PubMed  Google Scholar 

  • Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, 3rd et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    PubMed  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    CAS  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    CAS  PubMed  Google Scholar 

  • Dahlkvist A, Sunnerhagen P (1994) Two novel deduced serine/threonine protein kinases from Saccharomyces cerevisiae. Gene 139:27–33

    CAS  PubMed  Google Scholar 

  • Dahlkvist A, Kanter-Smoler G, Sunnerhagen P (1995) The RCK1 and RCK2 protein kinase genes from Saccharomyces cerevisiae suppress cell cycle checkpoint mutations in Schizosaccharomyces pombe. Mol Gen Genet 246:316–326

    CAS  PubMed  Google Scholar 

  • Degols G, Russell P (1997) Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol Cell Biol 17:3356–63

    CAS  PubMed  Google Scholar 

  • Degols G, Shiozaki K, Russell P (1996) Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cell Biol 16:2870–2877

    CAS  PubMed  Google Scholar 

  • Gachet Y, Tournier S, Millar JB, Hyams JS (2001) A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412:352–355

    Article  CAS  PubMed  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N. 1974. Schizosaccharomyces pombe. In King RC (ed) Handbook of genetics, Vol. 1: Bacteria, bacteriophages, and fungi. Plenum, New York, pp. 395–446.

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    CAS  PubMed  Google Scholar 

  • Hunter T (1991) Protein kinase classification. Meth Enzymol 200:3–37

    CAS  PubMed  Google Scholar 

  • Kato T Jr, Okazaki K, Murakami H, Stettler S, Fantes PA, Okayama H (1996) Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett 378:207–12

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Takahata N (1983) Selective constraint in protein polymorphism: study of the effectively neutral mutation model by using an improved pseudosampling method. Proc Natl Acad Sci U S A 80:1048–52

    CAS  PubMed  Google Scholar 

  • Kon N, Schroeder SC, Krawchuk MD, Wahls WP (1998) Regulation of the Mts1-Mts2-dependent ade6-M26 meiotic recombination hot spot and developmental decisions by the Spc1 mitogen-activated protein kinase of fission yeast. Mol Cell Biol 18:7575–7583

    CAS  PubMed  Google Scholar 

  • Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C et al. (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97

    CAS  PubMed  Google Scholar 

  • Kunitomo H, Sugimoto A, Wilkinson CR, Yamamoto M (1995) Schizosaccharomyces pombe pac2 + controls the onset of sexual development via a pathway independent of the cAMP cascade. Curr Genet 28:32–38

    CAS  PubMed  Google Scholar 

  • Kunitomo H, Higuchi T, Iino Y, Yamamoto M (2000) A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11 + gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell 11:3205–3217

    CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Li P, McLeod M (1996) Molecular mimicry in development: identification of ste11+ as a substrate and mei3+ as a pseudosubstrate inhibitor of ran1+ kinase. Cell 87:869–880

    CAS  PubMed  Google Scholar 

  • Melcher ML, Thorner J (1996) Identification and characterization of the CLK1 gene product, a novel CaM kinase-like protein kinase from the yeast Saccharomyces cerevisiae. J Biol Chem 271:29958–29968

    Article  CAS  PubMed  Google Scholar 

  • Millar JB (1999) Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts. Biochem Soc Symp 64:49–62

    CAS  PubMed  Google Scholar 

  • Millar JB, Buck V, Wilkinson MG (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9:2117–2130

    CAS  PubMed  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of the fission yeast Schizosaccharomyces pombe. Meth Enzymol 194:795–823

    CAS  PubMed  Google Scholar 

  • Nakamura T, Nakamura-Kubo M, Hirata A, Shimoda C (2001) The Schizosaccharomyces pombe spo3 +gene is required for assembly of the forespore membrane and genetically interacts with psy1 + encoding syntaxin-like protein. Mol Biol Cell 12:3955–72

    CAS  PubMed  Google Scholar 

  • Neiman AM, Stevenson BJ, Xu HP, Sprague GF, Jr., Herskowitz I et al. (1993) Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell 4:107–120

    CAS  PubMed  Google Scholar 

  • Neufeld B, Grosse-Wilde A, Hoffmeyer A, Jordan BW, Chen P, Dinev D, Ludwig S, Rapp UR (2000) Serine/Threonine kinases 3pK and MAPK-activated protein kinase 2 interact with the basic helix-loop-helix transcription factor E47 and repress its transcriptional activity. J Biol Chem 275:20239–20242

    Article  CAS  PubMed  Google Scholar 

  • Ramne A, Bilsland-Marchesan E, Erickson S, Sunnerhagen P (2000) The protein kinases Rck1 and Rck2 inhibit meiosis in budding yeast. Mol Gen Genet 263:253–261

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen CD (2000) Cloning of a calmodulin kinase I homologue from Schizosaccharomyces pombe. J Biol Chem 275:685–690

    Article  CAS  PubMed  Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Piris M, Posas F, Alemany V, Winge I, Hidalgo E et al. (2002) The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast. J Biol Chem 277:17722–17727

    Article  CAS  PubMed  Google Scholar 

  • Shiozaki K, Russell P (1995a) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739–743

    CAS  PubMed  Google Scholar 

  • Shiozaki K, Russell P (1995b) Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast. EMBO J 14:492–502

    CAS  PubMed  Google Scholar 

  • Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276–2288

    CAS  PubMed  Google Scholar 

  • Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW (1999) Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem 274:2893–2898

    CAS  PubMed  Google Scholar 

  • Smith JA, Poteet-Smith CE, Lannigan DA, Freed TA, Zoltoski AJ, Sturgill TW (2000) Creation of a stress-activated p90 ribosomal S6 kinase. The carboxyl- terminal tail of the MAPK-activated protein kinases dictates the signal transduction pathway in which they function. J Biol Chem 275:31588–31593

    Article  CAS  PubMed  Google Scholar 

  • Stettler S, Warbrick E, Prochnik S, Mackie S, Fantes P (1996) The wis1 signal transduction pathway is required for expression of cAMP- repressed genes in fission yeast. J Cell Sci 109:1927–35

    CAS  PubMed  Google Scholar 

  • Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991) Schizosaccharomyces pombe ste11 + encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5:1990–1999

    CAS  PubMed  Google Scholar 

  • Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N (1995) Schizosaccharomyces pombe atf1 + encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 14:6193–6208

    CAS  PubMed  Google Scholar 

  • Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2:110–116

    Article  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA 98:5625–5630

    Article  CAS  PubMed  Google Scholar 

  • Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev 12:1453-63

    CAS  PubMed  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    CAS  PubMed  Google Scholar 

  • Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC et al. (1996) The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev 10:2289–2301

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhong S, Dong Z, Chen N, Bode AM, Ma W (2001) UVA induces Ser381 phosphorylation of p90RSK/MAPKAP-K1 via ERK and JNK pathways. J Biol Chem 276:14572–14580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Fund (2163-B00-11XAC), the Swedish Natural Science Research Council (2000-5471), and the Swedish Research Council for Medicine (K2002-31X-14197-01A). Claes Molin is acknowledged for technical assistance during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sunnerhagen.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asp, E., Sunnerhagen, P. Mkp1 and Mkp2, two MAPKAP-kinase homologues in Schizosaccharomyces pombe, interact with the MAP kinase Sty1. Mol Gen Genomics 268, 585–597 (2003). https://doi.org/10.1007/s00438-002-0786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-002-0786-y

Keywords

Navigation