Skip to main content

Advertisement

Log in

The ATPase ClpX is conditionally involved in the morphological differentiation of Streptomyces lividans

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

ATP-dependent proteases of the ClpP type are widespread in eubacteria. These proteolytic complexes are composed of a proteolytic subunit and an ATPase subunit. They are involved in the degradation of denatured proteins, but also play a role in specific regulatory pathways. In Streptomyces lividans strains which lack the proteolytic subunit ClpP1, cell cycle progression has been shown to be blocked at early stages of growth. In this study, we examined the role of the ATPase subunit ClpX, a possible partner of the products of the clpP1 operon. A clpX mutant was obtained and it was shown that its growth was impaired only on acidic medium. Thus, the clpX phenotype differs from the clpP1 phenotype, indicating that these two components have only partially overlapping roles. We also analyzed the expression of clpX. Although clpX expression is increased under heat-shock conditions in many bacteria, we found that this is not the case in S. lividans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A, B.
Fig. 5A--C.
Fig. 6

Similar content being viewed by others

References

  • Blondelet-Rouault MH, Weiser J, Lebrihi A, Branny P,Pernodet JL (1997) Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315–317

    Article  CAS  PubMed  Google Scholar 

  • Bourn WR, Babb B (1995) Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res 23:3696–3703

    CAS  PubMed  Google Scholar 

  • Clarke AK, Schelin J, Porankiewicz J (1998) Inactivation of the clpP1gene for the proteolytic subunit of the ATP- dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Plant Mol Biol 37:791–801

    Google Scholar 

  • De Crecy-Lagard V, Servant-Moisson P, Viala J, Grandvalet C, Mazodier P (1999) Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol Microbiol 32:505–517

    PubMed  Google Scholar 

  • Elliot M, Damji F, Passantino R, Chater K, Leskiw B (1998) The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 180:1549–1555

    CAS  PubMed  Google Scholar 

  • Gerth U, Wipat A, Harwood CR, Carter N, Emmerson PT, Hecker M (1996) Sequence and transcriptional analysis of clpX, a class-III heat-shock gene of Bacillus subtilis. Gene 181:77–83

    Article  PubMed  Google Scholar 

  • Gerth U, Kruger E, Derre I, Msadek T, Hecker M (1998) Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28:787–802

    CAS  PubMed  Google Scholar 

  • Gibson TJ (1984), Studies on the Epstein-Barr virus genome. Ph.D. thesis, Cambridge University, UK

  • Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  CAS  PubMed  Google Scholar 

  • Grandvalet C, de Crecy-Lagard V, Mazodier P (1999) The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol 31:521–532

    CAS  PubMed  Google Scholar 

  • Grimaud R, Kessel M, Beuron F, Steven AC, Maurizi MR (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem 273:12476–12481

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation . Norwich, UK

  • Jenal U, Fuchs T (1998) An essential protease involved in bacterial cell-cycle control. EMBO J 17:5658–5669

    CAS  PubMed  Google Scholar 

  • Kessel M, Maurizi MR, Kim B, Kocsis E, Trus BL, Singh SK, Steven AC (1995) Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J Mol Biol 250:587–594

    Article  CAS  PubMed  Google Scholar 

  • Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8:230–233

    Article  CAS  PubMed  Google Scholar 

  • Kroh HE, Simon LD (1990) The ClpP component of Clp protease is the sigma 32-dependent heat shock protein. J Bacteriol 172:6026–6034

    CAS  PubMed  Google Scholar 

  • Krüger E, Zühlke D, Witt E, Ludwig H, Hecker M (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20:852–863

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lawlor EJ, Baylis HA, Chater KF (1987) Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1:1305–1310

    CAS  PubMed  Google Scholar 

  • Levchenko I, Luo L, Baker TA (1995) Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9:2399–2408

    CAS  PubMed  Google Scholar 

  • Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G (1998) ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914

    CAS  PubMed  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    CAS  PubMed  Google Scholar 

  • Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171:1459–1466

    CAS  PubMed  Google Scholar 

  • Muth G, Nubbaumer B, Wohlleben W, Pühler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348

    CAS  Google Scholar 

  • Nodwell JR, McGovern K, Losick R (1996) An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22:881–893

    CAS  PubMed  Google Scholar 

  • Nodwell JR, Yang M, Kuo D, Losick R (1999) Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151:569–584

    CAS  PubMed  Google Scholar 

  • Østeras M, Stotz A, Schmid Nuoffer S, Jenal U (1999) Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. J Bacteriol 181:3039–3050

    PubMed  Google Scholar 

  • Pope MK, Green BD, Westpheling J (1996) The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell-cell signalling. Mol Microbiol 19:747–756

    CAS  PubMed  Google Scholar 

  • Porankiewicz J, Schelin J, Clarke AK (1998) The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29:275–283

    CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    PubMed  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Review. Trends Biochem Sci 21:289–296

    CAS  PubMed  Google Scholar 

  • Schweder T, Lee KH, Lomovskaya O, Matin A (1996) Regulation of Escherichia coli starvation sigma factor sigma S by ClpXP protease. J Bacteriol 178:470–476

    CAS  PubMed  Google Scholar 

  • Süsstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ (1998) Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33–46

    PubMed  Google Scholar 

  • Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A, Takaya A, Suzuki M, Sekiya K, Matsui H, Kutsukake K, Yamamoto T (2002) The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 184:645–653

    CAS  PubMed  Google Scholar 

  • Tsai JW, Alley MR (2001) Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J Bacteriol 183: 5001–5007

    Article  CAS  PubMed  Google Scholar 

  • Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17:6730–6738

    CAS  PubMed  Google Scholar 

  • Viala J, Rapoport G, Mazodier P (2000) The clpP multigenic family in Streptomyces lividans: conditional expression of the clpP3 clpP4operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol 38:602–612

    CAS  PubMed  Google Scholar 

  • Viollier PH, Minas W, Dale GE, Folcher M, Thompson CJ (2001) Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol 183:3184–3192

    CAS  PubMed  Google Scholar 

  • Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Georgopoulos C, Zylicz M (1995) The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J 14:1867–1877

    CAS  PubMed  Google Scholar 

  • Wehmeier UF (1995) New multifunctional Escherichia coli-Streptomyces shuttle vectors allowing blue-white screening on XGal plates. Gene 165:149–150

    Article  CAS  PubMed  Google Scholar 

  • Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K, Maurizi MR (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91:12218–12222

    CAS  PubMed  Google Scholar 

  • Willey J, Schwedock J,Losick R (1993) Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev 7:895–903

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J,Messing J (1985) Improved M13 phage cloning vectors and host strains : nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Msadek and T. Mignot for fruitful discussions. We thank G. Rapoport for his comments on the manuscript. We are grateful to Edith Gouin and Roger Zenon for their help in obtaining polyclonal anti-ClpX antibodies in rabbit. We thank A. Edelman and associates for correcting this manuscript. This work was supported by research funds from the Institut Pasteur, Centre National de Recherche Scientifique and the Université Paris 7. J.V. was the recipient of a fellowship from the Ministère de l'Education Nationale, de la Recherche et de la Technologie

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mazodier.

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viala, J., Mazodier, P. The ATPase ClpX is conditionally involved in the morphological differentiation of Streptomyces lividans . Mol Gen Genomics 268, 563–569 (2003). https://doi.org/10.1007/s00438-002-0783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-002-0783-1

Keywords

Navigation