Skip to main content
Log in

Diversity of group II introns in the genome of Sinorhizobium meliloti strain 1021: splicing and mobility of RmInt1

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The number and diversity of known group II introns in eubacteria are continually increasing with the addition of new data from sequencing projects, but the significance of these introns in the evolution of bacterial genomes is unknown. We analyzed the main features of the group II introns present in the genome of the soil microorganism Sinorhizobium meliloti (strain 1021), the nitrogen-fixing symbiont of alfalfa, the DNA sequence of which was recently determined. Strain 1021 harbors three different classes of group II introns: RmInt1, of bacterial class D; SMb2147/SMb21167, which cluster within bacterial class C; and SMa1875, the phylogenetic class of which is uncertain. The group II introns SMb2147/SMb21167 and SMa1875 are widely distributed in S. meliloti, but are present in lower copy numbers than RmInt1. Strain 1021 harbors three copies of RmInt1, which is pSym-specific. Although RmInt1 is spliced in strain 1021, mobility assays suggested that, in contrast to other S. meliloti strains, the genetic background of strain 1021 does not support intron homing events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.
Fig. 3A–C.
Fig. 4A, B.

Similar content being viewed by others

References

  • Barloy-Hubler F, Capela D, Barnett MJ, Kalman S, Federspiel NA, Long SR, Galibert F (2000a) High-resolution physical map of the Sinorhizobium meliloti 1021 pSyma megaplasmid. J Bacteriol 182:1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Barloy-Hubler F, Capela D, Batut J, Galibert F (2000b) High resolution physical map of the pSymb megaplasmid and comparison of the three replicons of Sinorhizobium meliloti. Curr Microbiol 41:109–113

    Article  CAS  PubMed  Google Scholar 

  • Barnett MJ, et al (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

  • Bittinger MA, Gross JA, Widom J, Clardy J, Handelsman J (2000) Rhizobium etli CE3 carries vir gene homologs on a self-transmissible plasmid. Mol Plant-Microbe Interact 13:1019–1021

    CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weinssenbach J, Ehrlich D, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactoccocus lactis ssp. lactis IL403. Genome Res 11:731–753

    CAS  PubMed  Google Scholar 

  • Boucher Y, Nesbo CL, Doolittle WF (2001) Microbial genomes: dealing with diversity. Curr Opin Microbiol 4:285–289

    CAS  PubMed  Google Scholar 

  • Capela D, Barloy-Hubler F, Gatius M-T, Gouzy J, Galibert F (1999) A high-density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc Natl Acad Sci USA 96:9357–9362

    Article  CAS  Google Scholar 

  • Capela D, et al (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti stain 1021. Proc Natl Acad Sci USA 98:9877–9882

  • Casadesús J, Olivares J (1979) Rough and fine linkage mapping of the Rhizobium meliloti chromosome. Mol Gen Genet 174:203–209

    PubMed  Google Scholar 

  • Cousineau B, Smith D, Lawrence-Cavanagh S, Mueller JE, Yang J, Mills D, Manias D, Dunny G, Lambowitz AM, Belfort M (1998) Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous recombination. Cell 94:451–462

    CAS  PubMed  Google Scholar 

  • Dai L, Zimmerly S (2002) Compilation and analysis of group II insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res 30:1091–1102

    Article  CAS  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria. Construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci. USA 77:7347–7351

    CAS  PubMed  Google Scholar 

  • Downie JA, Young JP (2001) The ABC of symbiosis. Nature 412:597–598

    Article  CAS  PubMed  Google Scholar 

  • Eskes R, Yang J, Lambowitz AM, Perlman PS (1997) Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88:865–874

    CAS  PubMed  Google Scholar 

  • Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364:358–361

    CAS  PubMed  Google Scholar 

  • Finan TM, et al (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894

  • Galagan JE, et al (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  CAS  PubMed  Google Scholar 

  • Galibert F, et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    CAS  PubMed  Google Scholar 

  • Guo H, Karberg M, Long M, Jones (third) JP, Sullenger B, Lambowitz AM (2000) Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289:452–457

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    CAS  PubMed  Google Scholar 

  • Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS (1999) Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In: Cech TR, Atkins JF (eds) The RNA world (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 451–485

  • Marqués S, Ramos JL, Timmis KN (1993) Analysis of the mRNA structure of the Pseudomonas putida TOL meta fission pathway operon around the transcription initiation point, the xylTE and the xylFJ regions. Biochem Biophys Acta 1216:227-236

    Google Scholar 

  • Martínez-Abarca F, Toro N (2000a) Group II introns in the bacterial world. Mol Microbiol 38:917–926

    Article  PubMed  Google Scholar 

  • Martínez-Abarca F, Toro N (2000b) RecA-independent ectopic transposition in vivo of a bacterial group II intron. Nucleic Acids Res 28:4397–4402

    Google Scholar 

  • Martínez-Abarca F, Zekri S, Toro N (1998) Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tc1/IS3 retroposon superfamily. Mol Microbiol 28:1295–1306

    Google Scholar 

  • Martínez-Abarca F, García-Rodríguez FM, Toro N (2000) Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol Microbiol 35:1405–1412

    Article  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  • Matsuura M, Saldanha R, Ma H, Wank H, Yang J, Mohr G, Cavanagh S, Dunny GM, Belfort M, Lambowitz AM (1997) A bacterial group II intron encoding reverse transcriptase, maturase and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev 11:2910–2924

    CAS  PubMed  Google Scholar 

  • Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461

    Article  CAS  PubMed  Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns: a review. Gene 82:5–30

    CAS  PubMed  Google Scholar 

  • Mills DA, Mckay LL, Dunny GM (1996) Splicing of a group II intron involved in the conjugative transfer of pRS01 in Lactococci. J Bacteriol 178:3531–3538

    CAS  PubMed  Google Scholar 

  • Mills DA, Manias DA, McKay LL, Dunny GM (1997) Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J Bacteriol 179:6107–6111.

    CAS  PubMed  Google Scholar 

  • Muñoz E, Villadas PJ, Toro N (2001) Ectopic transposition of a group II intron in natural bacterial populations. Mol Microbiol 41:645–652

    Article  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Peebles CL, Perlman PS, Mecklenburg KL, Petrillo ML, Tabor JH, Jarrell KA, Cheng HL (1986) A self-splicing RNA excises an intron lariat. Cell 44:213–223

    CAS  PubMed  Google Scholar 

  • Robertsen BK, Aiman P, Darvill AG, McNeil M, Albersheim P (1981) The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol 67:389–400

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Selbitschka W, Arnol W, Jording D, Kosier B, Toro N, Pühler A (1995) The insertion sequence element IS Rm2011-2 belongs to the IS630-Tc1 family of IS elements and is abundant in Rhizobium meliloti. Gene 163:59–64

    Article  CAS  PubMed  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Co-evolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Wank HJ, SanFilippo J, Singh RN, Matsuura M, Lambowitz AM (1999) A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol Cell 4:239–250

    CAS  PubMed  Google Scholar 

  • Zimmerly S, Hausner G, Xu-W-C (2001) Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res 29:1238–1250

    Article  CAS  PubMed  Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide In: Barciszewski J, Clark BFC (eds) RNA Biochemistry and biotechnology. NATO ASI Series, Kluwer Academic Publishers, Dordrecht, pp 11–43

    Google Scholar 

Download references

Acknowledgments

We thank Dr. José Ignacio Jiménez Zurdo and Dr. Steven Zimmerly for critical reading of the manuscript and Robert Olson who contribute to the folding of intron Sma1875. This work was supported by Grants BIO99-0905 and BIO2002-02579 from the Ministerio de Ciencia y Tecnología

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Toro.

Additional information

Communicated by W. Arber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toro, N., Martínez-Abarca, F., Fernández-López, M. et al. Diversity of group II introns in the genome of Sinorhizobium meliloti strain 1021: splicing and mobility of RmInt1. Mol Gen Genomics 268, 628–636 (2003). https://doi.org/10.1007/s00438-002-0778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-002-0778-y

Keywords

Navigation