Skip to main content

Advertisement

Log in

Lactase can target cellular differentiation of Acanthamoeba castellanii belonging to the T4 genotype

  • Brief Report
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data is available upon request to the author.

References

  • Abjani F, Khan NA, Yousuf FA, Siddiqui R (2016) Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts. Cont Lens Anterior Eye 39(3):239–243

    Article  PubMed  Google Scholar 

  • Ahmed U, Anwar A, Ong SK, Anwar A, Khan NA (2022a) Applications of medicinal chemistry for drug discovery against Acanthamoeba infections. Med Res Rev 42(1):462–512

    Article  PubMed  Google Scholar 

  • Ahmed U, Ho KY, Simon SE, Saad SM, Ong SK, Anwar A, Tan KO, Sridewi N, Khan KM, Khan NA, Anwar A (2022b) Potential anti-acanthamoebic effects through inhibition of CYP51 by novel quinazolinones. Acta Trop 231:106440

    Article  CAS  PubMed  Google Scholar 

  • Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, Hamid M, Khan KM, Khan NA, Rashid Y, Anwar A (2023) Anti-amoebic effects of synthetic acridine-9 (10H)-one against brain-eating amoebae. Acta Trop 239:106824

    Article  CAS  PubMed  Google Scholar 

  • Aksozek A, McClellan K, Howard K, Niederkorn JY, Alizadeh H (2002) Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. J Parasitol 88(3):621–623

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Khan NA, Siddiqui R (2018) Combating Acanthamoeba spp. cysts: what are the options? Parasit Vectors 11(1):1–6

    Article  Google Scholar 

  • Anwar A, Mungroo MR, Anwar A, Sullivan WJ Jr, Khan NA, Siddiqui R (2019a) Repositioning of guanabenz in conjugation with gold and silver nanoparticles against pathogenic amoebae Acanthamoeba castellanii and Naegleria fowleri. ACS Infect Dis 5(12):2039–2046

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Khan NA, Siddiqui R (2019b) Galactose as novel target against Acanthamoeba cysts. PLoS Negl Trop Dis 13(7):e0007385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baig AM, Khaleeq A (2020) First reports of effects of insulin, human-like insulin receptors and adapter proteins in Acanthamoeba castellanii. Sci Rep 10(1):1–4

    Article  Google Scholar 

  • Bowers B, Korn ED (1969) The fine structure of Acanthamoeba castellanii (Neff strain) II. Encystment, J Cell Bio 41(3):786–805

    Article  CAS  Google Scholar 

  • Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Bonilla P, Martínez-Palomo A (2005) Ultrastructural study of encystation and excystation in Acanthamoeba castellanii. J Eukaryot Microbiol 52(2):153–158

    Article  PubMed  Google Scholar 

  • Dart JK, Saw VP, Kilvington S (2009) Acanthamoeba keratitis: diagnosis and treatment update 2009. Am J Ophthalmol 148(4):487–499

    Article  PubMed  Google Scholar 

  • Dudley R, Alsam S, Khan NA (2007) Cellulose biosynthesis pathway is a potential target in the improved treatment of Acanthamoeba keratitis. Appl Microbiol Biotechnol 75(1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Dudley R, Jarroll EL, Khan NA (2009) Carbohydrate analysis of Acanthamoeba castellanii. Exp Parasitol 122(4):338–343

    Article  CAS  PubMed  Google Scholar 

  • Forsgård RA (2019) Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr 110(2):273–279

    Article  MathSciNet  PubMed Central  PubMed  Google Scholar 

  • Gooi P, Lee-Wing M, Brownstein S, El-Defrawy S, Jackson WB, Mintsioulis G (2008) Acanthamoeba keratitis: persistent organisms without inflammation after 1 year of topical chlorhexidine. Cornea 27(2):246–248

    Article  PubMed  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirukawa Y, Nakato H, Izumi S, Tsuruhara T, Tomino S (1998) Structure and expression of a cyst specific protein of Acanthamoeba castellanii. Biochim Biophys Acta (BBA)-Gene Struct Expr 1398(1):47–56

    Article  CAS  Google Scholar 

  • Khan NA (2003) Pathogenesis of Acanthamoeba infections. Microb Pathog 34(6):277–285

    Article  PubMed  Google Scholar 

  • Kulsoom H, Baig AM, Siddiqui R, Khan NA (2014) Combined drug therapy in the management of granulomatous amoebic encephalitis due to Acanthamoeba spp., and Balamuthia mandrillaris. Exp Parasitol 145:S115-20

    Article  CAS  PubMed  Google Scholar 

  • Lazuana T, Astuty H, Sari IP (2019) Effect of cellulase enzyme treatment on cyst wall degradation of Acanthamoeba sp. J Parasitol Res 2019:8915314. https://doi.org/10.1155/2019/8915314

  • Lloyd D, Turner NA, Khunkitti W, Hann AC, Furr JR, Russell AD (2001) Encystation in Acanthamoeba castellanii: development of Biocide Resistance. J Eukaryot Microbiol 48(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E, De Pablos LM, Profotova B, Nohynkova E, Osuna A, Valladares B (2008) Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryot Cell 7(3):509–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marciano-Cabral F, Puffenbarger R, Cabral GA (2000) The increasing importance of Acanthamoeba infections. J Eukaryot Microbiol 47(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Martinez AJ (1985) Free-living amebas: natural history, prevention, diagnosis, pathology, and treatment of disease. CRC Press; Boca Raton, FL, pp 5–42

    Google Scholar 

  • Neff RJ, Neff RH (1969) The biochemistry of amoebic encystment, In Symposia of the Society for Exp. Biology 23:51–81

    CAS  Google Scholar 

  • Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5(1):1–3

    Google Scholar 

  • Stapleton F, Carnt N (2012) Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 26:185–193

    Article  CAS  PubMed  Google Scholar 

  • Teknos TN, Poulin MD, Laruentano AM, Li KK (2000) Acanthamoeba rhinosinusitis: charactetization, diagnosis, and treatment. Am J Rhinol 14(6):387–392

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu D, Tachibana H, Feng M, Cheng XJ (2020) Identification and biochemical characterisation of Acanthamoeba castellanii cysteine protease 3. Parasit Vectors 13(1):592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weisman RA (1976) Differentiation in Acanthamoeba castellanii. Annu Rev Microbiol 30(1):189–219

    Article  CAS  PubMed  Google Scholar 

  • Wiley CA, Safrin RE, Davis CE, Lampert PW, Braude AI, Martinez AJ, Visvesvara GS (1987) Acanthamoeba meningoencephalitis in a patient with AIDS. J Infect Dis 155(1):130–133

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of Sunway University, Malaysia (Internal Grant Scheme 2022), GRTIN-IGS(02)-DBS-10–2022. Ruqaiyyah Siddiqui and Naveed Ahmed Khan are supported by the Air Force Office of Scientific Research (AFOSR), USA.

Author information

Authors and Affiliations

Authors

Contributions

AA and NAK conceptualized the study amid discussions with KMK and RS. FAS and UA carried out all experimental work amid critical discussions with NAK, AMA, HF, and AA. FAS, AA, and UA prepared the first draft, while KMK, RS, HF, AMA, and NAK corrected and finalized the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Naveed Ahmed Khan or Ayaz Anwar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Sutherland Maciver.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fathimath Afaaf Simau and Usman Ahmed contributed equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simau, F.A., Ahmed, U., Khan, K.M. et al. Lactase can target cellular differentiation of Acanthamoeba castellanii belonging to the T4 genotype. Parasitol Res 123, 117 (2024). https://doi.org/10.1007/s00436-024-08131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00436-024-08131-2

Keywords

Navigation