Skip to main content

Advertisement

Log in

Molecular surveillance of Kelch-13 gene in Plasmodium falciparum field isolates from Mayurbhanj District, Odisha, India, and in silico artemisinin-Kelch-13 protein interaction study

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The global malaria control and elimination program faces major threats due to the emergence and transmission of the anti-malarial drug-resistant strain of Plasmodium falciparum. Monitoring of artemisinin (ART) resistance marker Kelch-13 in the malaria-endemic region is essential in mitigating the disease’s morbidity and mortality. The current study aimed to generate baseline information for further surveillance in the future. The current research was designed and conducted from July 2019 to June 2021 to monitor Pfkelch13 mutation at the molecular level in the eastern region of India. We also conducted an in silico study to understand the drug-protein interactions between ART and the protein crystal of PfKelch13 (KELCH) with PDB id:4ZGC. The kelch-13 gene was amplified by nested polymerase chain reaction (PCR) and sequenced through the Sanger sequencing method. Reference 3D7 clone (PF3D7_1343700) was used to align and probe all the sequences. The sequence analysis showed the absence of validated or associated mutation in the Kelch-13 propeller domain. The absence of natural selection in drug resistance was confirmed by the Tajima test. Further, in silico interaction studies between the drug ART and the Kelch propeller domain of P. falciparum were evaluated by structure predictions, molecular docking, molecular dynamics (MD) simulations, and estimations of binding free energies for the KELCH-ART complex. The results were compared with the apoprotein (KELCH-APO). The study confirmed the favorable binding of ART with the Kelch-13 propeller domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ansari HR, Templeton TJ, Subudhi AK, Ramaprasad A, Tang J, Lu F, Naeem R, Hashish Y, Oguike MC, Benavente ED, Clark TG, Sutherland CJ, Barnwell JW, Culleton R, Cao J, Pain A (2016) Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. Int J Parasitol 46(11):685–696. https://doi.org/10.1016/j.ijpara.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  • Antinori S, Galimberti L, Milazzo L, Corbellino M (2013) Plasmodium knowlesi: The emerging zoonotic malaria parasite. Acta Trop 125(2):191–201. https://doi.org/10.1016/j.actatropica.2012.10.008

    Article  PubMed  Google Scholar 

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le-Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505(7481):50–55. https://doi.org/10.1038/nature12876

    Article  CAS  PubMed  Google Scholar 

  • Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, White NJ (2014) Spread of Artemisinin Resistance in Plasmodium falciparum Malaria. New England J Med. https://doi.org/10.1056/nejmoa1314981

    Article  Google Scholar 

  • Barik TK (2015) Antimalarial Drug: From its Development to Deface. Curr Drug Discov Technol 12(4):225–228. https://doi.org/10.2174/1570163812666150907100019

    Article  CAS  PubMed  Google Scholar 

  • Bayly CL, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: the RESP model. J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  • Biswas S, Valecha N, Tyagi PK, Phookan S, Dev V, Sharma SK, Subbarao SK (2003) Assessment of therapeutic efficacy of chloroquine and sulphadoxine-pyrimethamine in uncomplicated falciparum malaria. J Vector Borne Dis 40(3–4):92–99

    CAS  PubMed  Google Scholar 

  • Bridgford JL, Xie SC, Cobbold SA, Pasaje CFA, Herrmann S, Yang T, Gillett DL, Dick LR, Ralph SA, Dogovski C, Spillman NJ, Tilley L (2018) Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun 9(1):1–9. https://doi.org/10.1038/s41467-018-06221-1

    Article  CAS  Google Scholar 

  • Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Huang Y, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Ferrer SR, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AMBER 18. University of California, San Francis co, CA, USA

    Google Scholar 

  • Chang M, Johnston S, Seilie AM, Hergott D, Murphy SC (2021) Application of dried blood spot sample pooling strategies for Plasmodium 18S rRNA biomarker testing to facilitate identification of infected persons in large-scale epidemiological studies. Malar J 20:391. https://doi.org/10.1186/s12936-021-03907-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi N, Bhandari S, Bharti PK, Basak SK, Singh MP, Singh N (2015) Sympatric distribution of Plasmodium ovale curtisi and P. ovale wallikeri in India: implication for the diagnosis of malaria and its control. Trans R Soc Trop Med Hyg 109(5):352–354. https://doi.org/10.1093/trstmh/trv015

    Article  CAS  PubMed  Google Scholar 

  • Chhibber-Goel J, Sharma A (2019) Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance. Int J Parasitol Drugs Drug Resist 11:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppée R, Jeffares DC, Miteva MA, Sabbagh A, Clain J (2019) Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Sci Rep 9(1):1–17

    Article  Google Scholar 

  • Das S, Tripathy S, Chattopadhayay S, Das B, KarMahapatra S, Hati AK, Roy S (2017) Progressive increase in point mutations associates chloroquine resistance: Even after withdrawal of chloroquine use in India. Int J Parasitol: Drugs Drug Resist 7(3):251–261. https://doi.org/10.1016/j.ijpddr.2017.06.002

    Article  PubMed  Google Scholar 

  • Das S, Saha B, Hati AK, Roy S (2018) Evidence of Artemisinin-Resistant Plasmodium falciparum Malaria in Eastern India. N Engl J Med 379(20):1962–1964. https://doi.org/10.1056/NEJMc1713777

  • Das S, Manna S, Saha B, Hati AK, Roy S (2019) Novel pfkelch13 Gene Polymorphism Associates with Artemisinin Resistance in Eastern India. Clin Infect Dis 69(7):1144–1152. https://doi.org/10.1093/cid/ciy1038

    Article  CAS  PubMed  Google Scholar 

  • Dewar MJS, Zoebisch EG, Healy EF, Stewart JP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D, Hanpithakpong W, Lee SJ, Ringwald P, Imwong M, Chotivanich K, Lim P (2012) Artemisinin Resistance in Plasmodium falciparum Malaria. New Engl J Med 361(5):455–467. https://doi.org/10.1056/NEJMoa0808859

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

  • Hassett MR, Roepe PD (2019) Origin and spread of evolving artemisinin-resistant Plasmodium falciparum malarial parasites in Southeast Asia. Am J Trop Med Hyg 101(6):1204–1211. https://doi.org/10.4269/ajtmh.19-0379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  • Joste V, Kamaliddin C, Kendjo E, Hubert V, Argy N, Houzé S (2018) Distinction of Plasmodium ovale wallikeri and Plasmodium ovale curtisi using quantitative Polymerase Chain Reaction with High Resolution Melting revelation. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-017-18026-1

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Mod 51:2778–2786

    Article  CAS  Google Scholar 

  • Maier JA, Martinez Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayurbhanj District Population Census 2011–2021, https://www.census2011.co.in/census/district/400-mayurbhanj.html. Accessed 10/22/2021

  • Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen JH, Collet L, Cui L, Thakur GD, Dieye A, Djallé D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino FECJ, Fandeur T, Ferreira-da-Cruz MF, Fola AA, Fuehrer HP, Hassan AM, Herrera S, Hongvanthong B, Houzé S, Ibrahim ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M, Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati JB, Ménard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K, Nambozi M, Niaré K, Noedl H, Ouédraogo JB, Pillai DR, Pradines B, Quang-Phuc B, Ramharter M, Randrianarivelojosia M, Sattabongkot J, Sheikh-Omar A, Silué KD, Sirima SB, Sutherland C, Syafruddin D, Tahar R, Tang LH, Touré OA, Tshibangu-wa-Tshibangu P, Vigan-Womas I, Warsame M, Wini L, Zakeri S, Kim S, Eam R, Berne L, Khean C, Chy S, Ken M, Loch K, Canier L, Duru V, Legrand E, Barale JC, Stokes B, Straimer J, Witkowski B, Fidock DA, Rogier C, Ringwald P, Ariey F, Mercereau-Puijalon O (2016) A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374(25):2453–2464. https://doi.org/10.1056/NEJMoa1513137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321

    Article  CAS  PubMed  Google Scholar 

  • Mishra N, Prajapati SK, Kaitholia K, Bharti RS, Srivastava B, Phookan S, Anvikar AR, Dev V, Sonal GS, Dhariwal AC, White NJ, Valecha N (2015) Surveillance of artemisinin resistance in Plasmodium falciparum in India using the kelch13 molecular marker. Antimicrob Agents Chemother 59(5):2548–2553. https://doi.org/10.1128/AAC.04632-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra N, Bharti RS, Mallick P, Singh OP, Srivastava B, Rana R, Phookan S, Gupta HP, Ringwald P, Valecha N (2016) Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar J 15(1):4–9. https://doi.org/10.1186/s12936-016-1636-4

    Article  CAS  Google Scholar 

  • Mishra N, Kaitholia K, Srivastava B, Shah NK, Narayan JP, De V, Phookan S, Anvikar AR, Rana R, Bharti RS, Sonal GS,Dhariwal AC, Valecha N (2014) Declining efficacy of artesunate plus sulphadoxine-pyrimethamine in northeastern India. Malar J 13(284). https://doi.org/10.1186/1475-2875-13-284

  • Mohapatra PK, Prakash A, Taison K, Negmu K, Gohain AC, Namchoom NS, Wange D, Bhattacharyya DR, Goswami BK, Borgohain BK, Mahanta J (2005) Evaluation of chloroquine (CQ) and sulphadoxine/pyrimethamine (SP) therapy in uncomplicated falciparum malaria in Indo-Myanmar border areas. Trop Med Int Health 10(5):478–483. https://doi.org/10.1111/j.1365-3156.2005.01401.x

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  • Nagasundaram N, George Priya Doss C, Chiranjib Chakraborty, Karthick V, Thirumal Kumar D, Balaji V, Siva R, Aiping Lu, Zhang Ge, Hailong Zhu (2016) Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach. Scientific Reports 6(1):30106. https://doi.org/10.1038/srep30106

  • Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of Artemisinin-Resistant Malaria in Western Cambodia. N Engl J Med 359(24):2619–2620. https://doi.org/10.1056/nejmc0805011

    Article  CAS  PubMed  Google Scholar 

  • Nzoumbou-Boko R, Panté-Wockama CBG, Ngoagoni C, Petiot N, Legrand E, Vickos U, Gody JC, Manirakiza A, Ndoua C, Lombart JP, Ménard D (2020) Molecular assessment of kelch13 non-synonymous mutations in Plasmodium falciparum isolates from Central African Republic (2017–2019). Malar J 19(191). https://doi.org/10.1186/s12936-020-03264-y

  • Oguike MC, Betson M, Burke M, Nolder D, Stothard JR, Kleinschmidt I, Proietti C, Bousema T, Ndounga M, Tanabe K, Ntege E, Culleton R, Sutherland CJ (2011) Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. Int J Parasitol 41(6):677–683. https://doi.org/10.1016/j.ijpara.2011.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sehgal PN, Sharma MID, Sharma SL, Gogai S (1973) Resistance to chloroquine in falciparum malaria in Assam State. India J Commun Dis 5(4):175–180

    Google Scholar 

  • Singh GP, Goel P, Sharma A (2016) Structural mapping of Kelch13 mutations associated with artemisinin resistance in malaria. J Struct Funct Genomics 17(2–3):51–56

    Article  CAS  PubMed  Google Scholar 

  • Skjærven L, Yao XQ, Scarabelli G, Grant BJ (2014) Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinform 15(1):1–11

    Article  Google Scholar 

  • Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Ménard D, Fidock DA (2015) K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Sci 347(6220):428–431. https://doi.org/10.1126/science.1260867

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

  • Uwimana A, Legrand E, Stokes BH, Ndikumana JLM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati JB, Munguti K, Campagne P, Criscuolo A, Ariey F, Murindahabi M, Ringwald P, Fidock DA, Mbituyumuremyi A, Menard D (2020) Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med 26(10):1602–1608. https://doi.org/10.1038/s41591-020-1005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • WHO (2018) Global Malaria Programme. Artemisinin resistance and artemisinin-based combination therapy efficacy. Status report. https://www.who.int/malaria/publications/atoz/artemisinin-resistance-august2018/en/. Accessed 12 Oct 2020

  • WHO (2020) World malaria report 2020. 20 Years of Global Progress and Challenges. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020. Accessed 21/10/2021.

Download references

Acknowledgements

The authors thank Head, P.G. Dept. of Zoology of Berhampur University, Berhampur, for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

Laxman Kumar Murmu: conceptualization, methodology, collection of samples, writing (original draft). Tapan Kumar Barik: conceptualization, supervision, review and editing. Madhusmita Panda and Biswa Ranjan Meher: methodology, writing (original draft). Prasant Purohit: methodology, collection of samples. Jayantiprava Behera: methodology, review.

Corresponding author

Correspondence to Tapan Kumar Barik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Tobili Sam-Yellowe.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murmu, L.K., Panda, M., Meher, B.R. et al. Molecular surveillance of Kelch-13 gene in Plasmodium falciparum field isolates from Mayurbhanj District, Odisha, India, and in silico artemisinin-Kelch-13 protein interaction study. Parasitol Res 122, 717–727 (2023). https://doi.org/10.1007/s00436-023-07784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-023-07784-9

Keywords

Navigation