Skip to main content

Advertisement

Log in

Protective efficacy of Toxoplasma gondii bivalent MAG1 and SAG1 DNA vaccine against acute toxoplasmosis in BALB/c mice

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Toxoplasma gondii can infect a wide range of warm-blooded animals, causing a global toxoplasmosis zoonotic epidemic. Surface antigen 1 (SAG1) protein is expressed at the proliferative tachyzoite stage, whereas matrix antigen 1 (MAG1) is expressed at the bradyzoite and tachyzoite stages. These two proteins were found to perform protective roles in previous studies; however, their synergetic protective efficacy as a DNA vaccine against toxoplasmosis has not been clarified. In this study, we constructed recombinant pcDNA3.1( +)-TgMAG1 (pMAG1), pcDNA3.1( +)-TgSAG1 (pSAG1), and pcDNA3.1( +)-TgMAG1-TgSAG1 (pMAG1-SAG1) plasmids and administered them intramuscularly to immunize mice. The levels of anti-T. gondii IgG in serum and cytokines, such as Interleukin (IL)-4, IL-10, and Interferon (IFN)-γ, in splenocytes were measured using ELISA and the respective culture supernatants. Lethal doses of T. gondii (type I) RH strain tachyzoites were administered to immunized mice, and mortality was assessed. Conversely, mice infected with low doses of tachyzoites were monitored to determine their survival rates, and parasite burden analyses of the brains and livers were conducted. The bivalent TgMAG1 and TgSAG1 DNA vaccines exhibited excellent protective immunity against toxoplasmosis in mice, with higher serum IgG and splenocyte IFN-γ release levels, longer survival days, and reduced parasite burden in the brain and liver tissues (p < 0.05). These findings provide a new perspective for the development of T. gondii vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated or analyzed in this study are included in this article. If further clarification is needed, requests may be directed to the corresponding author.

References

  • Ahmadpour E, Sarvi S, Soteh MBH, Sharif M, Rahimi MT, Valadan R, Tehrani M, Khalilian A, Montazeri M, Daryani A (2017) Evaluation of the immune response in balb/c mice induced by a novel DNA vaccine expressing gra14 against Toxoplasma gondii. Parasite Immunol 39

  • Almería S, Cabezón O, Paniagua J, Cano-Terriza D, Jiménez-Ruiz S, Arenas-Montes A, Dubey JP, García-Bocanegra I (2018) Toxoplasma gondii in sympatric domestic and wild ungulates in the mediterranean ecosystem. Parasitol Res 117:665–671

    Article  PubMed  Google Scholar 

  • Attias M, Teixeira DE, Benchimol M, Vommaro RC, Crepaldi PH, Souza WD (2020) The life-cycle of Toxoplasma gondii reviewed using animations. Parasit Vectors 13:588

    Article  PubMed  PubMed Central  Google Scholar 

  • Beghetto E, Nielsen HV, Porto PD, Buffolano W, Guglietta S, Felici F, Petersen E, Gargano N (2005) A combination of antigenic regions of Toxoplasma gondii microneme proteins induces protective immunity against oral infection with parasite cysts. J Infect Dis 191:637–645

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Huang SY, Li ZY, Yuan ZG, Zhou DH, Petersen E, Zhang NZ, Zhu XQ (2013) Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasma gondii against acute toxoplasmosis in mice. Vaccine 31:1734–1739

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li ZY, Petersen E, Huang SY, Zhou DH, Zhu XQ (2015) DNA vaccination with genes encoding Toxoplasma gondii antigens rop5 and gra15 induces protective immunity against toxoplasmosis in kunming mice. Expert Rev Vaccines 14:617–624

    Article  CAS  PubMed  Google Scholar 

  • Choi WH, Park JS (2020) Immunogenicity and protective effect of a virus-like particle containing the SAG1 antigen of Toxoplasma gondii as a potential vaccine candidate for toxoplasmosis. Biomedicines 8:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang SC, Ko JC, Chen CP, Du JT, Yang CD (2013) Induction of long-lasting protective immunity against Toxoplasma gondii in balb/c mice by recombinant surface antigen 1 protein encapsulated in poly (lactide-co-glycolide) microparticles. Parasit Vectors 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contini C, Seraceni S, Cultrera R, Incorvaia C, Sebastian A, Picot S (2005) Evaluation of a real-time pcr-based assay using the lightcycler system for detection of Toxoplasma gondii bradyzoite genes in blood specimens from patients with toxoplasmic retinochoroiditis. Int J Parasitol 35:275–283

    Article  CAS  PubMed  Google Scholar 

  • Cristina MD, Porto PD, Buffolano W, Beghetto E, Spadoni A, Guglietta S, Piccolella E, Felici F, Gargano N (2004) The Toxoplasma gondii bradyzoite antigens bag1 and mag1 induce early humoral and cell-mediated immune responses upon human infection. Microbes Infect 6:164–171

    Article  PubMed  Google Scholar 

  • Dubey JP (2008) The history of Toxoplasma gondii–the first 100 years. J Eukaryot Microbiol 55:467–475

    Article  PubMed  Google Scholar 

  • Dubey JP (2010) Toxoplasma gondii infections in chickens (gallus domesticus): prevalence, clinical disease, diagnosis and public health significance. Zoonoses Public Health 57:60–73

    Article  CAS  PubMed  Google Scholar 

  • Fachado A, Rodriguez A, Angel SO, Pinto DC, Vila I, Acosta A, Amendoeira RR, Lannes-Vieira J (2003) Protective effect of a naked DNA vaccine cocktail against lethal toxoplasmosis in mice. Vaccine 21:1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DJP, Parmley SF (2002) Toxoplasma gondii mag1 protein expression. Trends Parasitol 18:482

    Article  PubMed  Google Scholar 

  • Gamble HR, Andrews CD, Dubey JP, Webert DW, Parmley SF (2000) Use of recombinant antigens for detection of Toxoplasma gondii infection in swine. J Parasitol 86:459–462

    Article  CAS  PubMed  Google Scholar 

  • Gong PT, Cao L, Guo YB, Dong H, Yuan SX, Yao XH, Ren WZ, Yao L, Xu ZL, Sun Q, Zhang XC (2016) Toxoplasma gondii: protective immunity induced by a DNA vaccine expressing gra1 and mic3 against toxoplasmosis in balb/c mice. Exp Parasitol 166:131–136

    Article  CAS  PubMed  Google Scholar 

  • Grzybowski MM, Dziadek B, Gatkowska JM, Dzitko K, Długońska H (2015) Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant rop5 and rop18 Toxoplasma gondii proteins. Parasitol Res 114:4553–4563

    Article  PubMed  Google Scholar 

  • Ivory C, Chadee K (2004) DNA vaccines: designing strategies against parasitic infections. Genet Vaccines Ther 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Letscher-Bru V, Pfaff AW, Abou-Bacar A, Filisetti D, Antoni E, Villard O, Klein J-P, Candolfi E (2003) Vaccination with Toxoplasma gondii sag-1 protein is protective against congenital toxoplasmosis in balb/c mice but not in cba/j mice. Infect Immun 71:6615–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YW, Zhou HY (2018) Moving towards improved vaccines for Toxoplasma gondii. Expert Opin Biol Ther 18:273–280

    Article  PubMed  Google Scholar 

  • Liu KY, Zhang DB, Wei QK, Li J, Li GP, Yu JZ (2006) Biological role of surface Toxoplasma gondii antigen in development of vaccine. World J Gastroenterol 12:2363–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Shi L, Cheng YB, Fan GX, Ren HX, Yuan YK (2009) Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigen segments of Toxoplasma gondii in mice. Parasitol Res 105:267–274

    Article  PubMed  Google Scholar 

  • Mévélec M, Bout D, Desolme B, Marchand H, Magné R, Bruneel O, Buzoni-Gatel D (2005) Evaluation of protective effect of DNA vaccination with genes encoding antigens gra4 and sag1 associated with gm-csf plasmid, against acute, chronical and congenital toxoplasmosis in mice. Vaccine 23:4489–4499

    Article  PubMed  Google Scholar 

  • Milne G, Webster JP, Walker M (2020) Toxoplasma gondii: an underestimated threat? Trends Parasitol 36:959–969

    Article  PubMed  Google Scholar 

  • Nakagome K, Okunishi K, Imamura M, Harada H, Matsumoto T, Tanaka R, Miyazaki J-I, Yamamoto K, Dohi M (2009) Ifn-gamma attenuates antigen-induced overall immune response in the airway as a th1-type immune regulatory cytokine. J Immunol 183:209–220

    Article  CAS  PubMed  Google Scholar 

  • Nan CL, Lei ZL, Zhao ZJ, Shi LH, Ouyang YC, Song XF, Sun QY, Chen DY (2007) Increased th1/th2 (ifn-gamma/il-4) cytokine mrna ratio of rat embryos in the pregnant mouse uterus. J Reprod Dev 53:219–228

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HV, Lauemøller SL, Christiansen L, Buus S, Foomsgaard A, Petersen E (1999) Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the sag1 gene. Infect Immun 67:6358–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas G, Roussos N, Falagas ME (2009) Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 39:1385–1394

    Article  PubMed  Google Scholar 

  • Parmley S, Slifer T, Araujo F (2002) Protective effects of immunization with a recombinant cyst antigen in mouse models of infection with Toxoplasma gondii tissue cysts. J Infect Dis 185(Suppl 1):S90-95

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg C, Craeye SD, Jongert E, Gargano N, Beghetto E, Porto PD, Vorup-Jensen T, Petersen E (2009) Induction of partial protection against infection with Toxoplasma gondii genotype ii by DNA vaccination with recombinant chimeric tachyzoite antigens. Vaccine 27:2489–2498

    Article  CAS  PubMed  Google Scholar 

  • Saadatnia G, Golkar M (2012) A review on human toxoplasmosis. Scand J Infect Dis 44:805–814

    Article  PubMed  Google Scholar 

  • Siachoque H, Guzman F, Burgos J, Patarroyo ME, Marin JEG (2006) Toxoplasma gondii: immunogenicity and protection by p30 peptides in a murine model. Exp Parasitol 114:62–65

    Article  CAS  PubMed  Google Scholar 

  • Tomita T, Mukhopadhyay D, Han B, Yakubu R, Tu V, Mayoral J, Sugi T, Ma Y, Saeij JPJ, Weiss LM (2021) Toxoplasma gondii matrix antigen 1 is a secreted immunomodulatory effector. mBio 12:e00603–e00621

  • Torres KCL, Dutra WO, Gollob KJ (2004) Endogenous il-4 and ifn-gamma are essential for expression of th2, but not th1 cytokine message during the early differentiation of human cd4+ t helper cells. Hum Immunol 65:1328–1335

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Lu S, Tong Q, Kong Q, Lou D (2013) The virulence-related rhoptry protein 5 (ROP5) of Toxoplasma Gondii is a novel vaccine candidate against toxoplasmosis in mice. Vaccine 31:4578–4584

    Article  CAS  PubMed  Google Scholar 

  • Warner RC, Chapman RC, Davis BN, Davis PH (2021) Review of DNA vaccine approaches against the parasite Toxoplasma gondii. J Parasitol 107:882–903

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the scientific and technological planning project of Jilin province (No. 20200403041SF), National Natural Science Foundation of China (No. 31302076), National Key R&D Program of China (2021YFF0702900), and the Jilin Scientific and Technological Development Program (20210506017ZP).

Author information

Authors and Affiliations

Authors

Contributions

LLC designed the research. PTG and XHL acquired the budget. SGC, PPZ, NZ, and XHL conducted the experiments. XZS, NZ, YBG, and NW performed the statistical analysis. LLC, PTG, and SGC drafted the manuscript. BKB and YL revised the English language. PTG revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianhe Li or Pengtao Gong.

Ethics declarations

Ethics approval

All mice were administered an adequate diet and handled in strict accordance with the guidelines of Experimental Animals Center, Jilin University, Changchun, China. All mouse experiments strictly complied with the animal ethics enforcement of the Animal Welfare and Research Ethics Committee of Jilin University (Permit Number: pzpx20190929065).

Consent to participate

This study did not involve human participants; therefore, volunteer consent to participate in this study was not required.

Consent for publication

All authors agreed to the publication of this paper in parasitology research.

Conflict of interests

The authors declare no competing interests.

Additional information

Handling Editor: Xing-Quan Zhu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Liu, J., Cao, S. et al. Protective efficacy of Toxoplasma gondii bivalent MAG1 and SAG1 DNA vaccine against acute toxoplasmosis in BALB/c mice. Parasitol Res 122, 739–747 (2023). https://doi.org/10.1007/s00436-022-07745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07745-8

Keywords

Navigation