Skip to main content
Log in

Effect of deleting four Toxoplasma gondii calcium-binding EGF domain-containing proteins on parasite replication and virulence

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract 

Several calcium-binding proteins including calcium-dependent protein kinases play important roles in several facets of the intracellular infection cycle of the apicomplexan protozoan parasite Toxoplasma gondii. However, the role of the calcium-binding epidermal growth factor (EGF) domain-containing proteins (CBDPs) remains poorly understood. In this study, we examined the functions of four CBDP genes in T. gondii RH strain of type I by generating knock-out strains using CRISPR-Cas9 system. We investigated the ability of mutant strains deficient in CBDP1, CBDP2, CBDP3, or CBDP4 to form plaques, replicate intracellularly, and egress from the host cells. The results showed that no definite differences between any of these four CBDP mutant strains and the wild-type strain in terms of their ability to form plaques, intracellular replication, and egress. Additionally, CBDP mutants did not exhibit any significant attenuated virulence compared to the wild-type strain in mice. The expression profiles of CBDP2-4 genes were conserved among T. gondii strains of different genotypes, life cycle stages, and developmental forms. Whether other CBDP genes play any roles in the pathogenicity of T. gondii strains of different genotypes remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets supporting the findings of this article are included within the paper and its supplementary materials.

References

  • Appella E, Weber IT, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231(1):1–4

    Article  CAS  Google Scholar 

  • Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, Sibley LD, White MW (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS ONE 5:e12354

    Article  Google Scholar 

  • Billker O, Lourido S, Sibley LD (2009) Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 5(6):612–622

    Article  CAS  Google Scholar 

  • Blomquist MC, Hunt LT, Barker WC (1984) Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proc Natl Acad Sci U S A 81(23):7363–7367

    Article  CAS  Google Scholar 

  • Borges-Pereira L, Budu A, McKnight CA, Moore CA, Vella SA, Hortua Triana MA et al (2015) Calcium signaling throughout the Toxoplasma gondii lytic cycle: a study using genetically encoded calcium indicators. J Biol Chem 290(45):26914–26926

    Article  CAS  Google Scholar 

  • Chen LF, Han XL, Li FX, Yao YY, Fang JP, Liu XJ, Li XC, Wu K, Liu M, Chen XG (2018) Comparative studies of Toxoplasma gondii transcriptomes: insights into stage conversion based on gene expression profiling and alternative splicing. Parasit Vectors 11:402

    Article  Google Scholar 

  • Davis CG (1990) The many faces of epidermal growth factor repeats. New Biol 2(5):410–419

    CAS  Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS (1984) Computer-based characterization of epidermal growth factor precursor. Nature 307(5951):558–560

    Article  CAS  Google Scholar 

  • Elsheikha HM (2008) Congenital toxoplasmosis: priorities for further health promotion action. Public Health 122(4):335–353

    Article  CAS  Google Scholar 

  • Elsheikha HM, Marra CM, Zhu XQ (2021) Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis. Clin Microbiol Rev 34(1):00115–00119

    Google Scholar 

  • Fritz HM, Buchholz KR, Chen X, Durbin-Johnson B, Rocke DM, Conrad PA, Boothroyd JC (2012) Transcriptomic analysis of Toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS ONE 7(2):e29998

    Article  CAS  Google Scholar 

  • Gaji RY, Behnke MS, Lehmann MM, White MW, Carruthers VB (2011) Cell cycle-dependent, intercellular transmission of Toxoplasma gondii is accompanied by marked changes in parasite gene expression. Mol Microbiol 79:192–204

    Article  CAS  Google Scholar 

  • Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger J, Mackey A, Pinney D, Roos D, Stoeckert C, Wang HM, Brunk B (2007) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36(Database issue):D553-556

    Article  Google Scholar 

  • Garcia-Réguet N, Lebrun M, Fourmaux MN, Mercereau-Puijalon O, Mann T, Beckers CJ, Samyn B, Van Beeumen J, Bout D, Dubremetz JF (2000) The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cell Microbiol 2(4):353–364

    Article  Google Scholar 

  • Garrison E, Treeck M, Ehret E, Butz H, Garbuz T, Oswald B, Settles M, Boothroyd J, Arrizabalaga G (2012) A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog 8(11):e1003049

    Article  CAS  Google Scholar 

  • Kannan G, Thaprawat P, Schultz TL, Carruthers VB (2021) Acquisition of host cytosolic protein by Toxoplasma gondii bradyzoites. mSphere 6(1):e00934-20

    Article  CAS  Google Scholar 

  • Kursula P (2014) The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 46(10):2295–2304

    Article  CAS  Google Scholar 

  • Lescault PJ, Thompson AB, Patil V, Lirussi D, Burton A, Margarit J, Bond J, Matrajt M (2010) Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state. PLoS ONE 5:e14463

    Article  CAS  Google Scholar 

  • Liang QL, Nie LB, Li TT, Elsheikha HM, Sun LX, Zhang ZW, Zhao DY, Zhu XQ, Wang JL (2021) Functional characterization of 17 protein serine/threonine phosphatases in Toxoplasma gondii using CRISPR-Cas9 system. Front Cell Dev Biol 9(10):738794

    Google Scholar 

  • Long S, Wang Q, Sibley LD (2016) Analysis of noncanonical calcium-dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9. Infect Immun 84(5):1262–1273

    Article  CAS  Google Scholar 

  • Long S, Brown KM, Drewry LL, Anthony B, Phan IQH, Sibley LD (2017) Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 13(5):e1006379

    Article  Google Scholar 

  • Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD (2010) Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465(7296):359–362

    Article  CAS  Google Scholar 

  • Lourido S, Jeschke GR, Turk BE, Sibley LD (2013) Exploiting the unique ATP-binding pocket of Toxoplasma calcium-dependent protein kinase 1 to identify its substrates. ACS Chem Biol 8(6):1155–1162

    Article  CAS  Google Scholar 

  • Lovett JL, Sibley LD (2003) Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116(Pt 14):3009–3016

    Article  CAS  Google Scholar 

  • McCoy JM, Whitehead L, van Dooren GG, Tonkin CJ (2012) TgCDPK3 regulates calcium-dependent egress of Toxoplasma gondii from host cells. PLoS Pathog 8(12):e1003066

    Article  CAS  Google Scholar 

  • Moreno SNJ, Docampo R (2003) Calcium regulation in protozoan parasites. Curr Opin Microbiol 6(4):359–364

    Article  CAS  Google Scholar 

  • Moreno SN, Ayong L, Pace DA (2011) Calcium storage and function in apicomplexan parasites. Essays Biochem 51:97–110

    Article  CAS  Google Scholar 

  • Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W (2014) The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 16(1):95–114

    Article  CAS  Google Scholar 

  • Nagamune K, Sibley LD (2006) Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa. Mol Biol Evol 23(8):1613–1627

    Article  CAS  Google Scholar 

  • Nagamune K, Moreno SN, Chini EN, Sibley LD (2008) Calcium regulation and signaling in apicomplexan parasites. Subcell Biochem 47:70–81

    Article  Google Scholar 

  • Nie LB, Liang QL, Wang M, Du R, Zhang MY, Elsheikha HM, Zhu XQ (2022) Global profiling of protein lysine malonylation in Toxoplasma gondii strains of different virulence and genetic backgrounds. PLoS Negl Trop Dis 16(5):e0010431

    Article  CAS  Google Scholar 

  • Pingret L, Millot JM, Sharonov S, Bonhomme A, Manfait M, Pinon JM (1996) Relationship between intracellular free calcium concentrations and the intracellular development of Toxoplasma gondii. J Histochem Cytochem 44(10):1123–1129

    Article  CAS  Google Scholar 

  • Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW (2005) The transcriptome of Toxoplasma gondii. BMC Biol 3:26

    Article  Google Scholar 

  • Radke JB, Lucas O, Nawas J, Sibley LD, White MW (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS ONE 5(8):e12354

    Article  Google Scholar 

  • Rico-Torres CP, Vargas-Villavicencio JA, Correa D (2016) Is Toxoplasma gondii type related to clinical outcome in human congenital infection? systematic and critical review. Eur J Clin Microbiol Infect Dis 35(7):1079–1088

    Article  CAS  Google Scholar 

  • Robert-Gangneux F, Dardé ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296

    Article  CAS  Google Scholar 

  • Selander-Sunnerhagen M, Ullner M, Persson E, Teleman O, Stenflo J, Drakenberg T (1992) How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem 267(27):19642–19649

    Article  CAS  Google Scholar 

  • Sharma J, Rodriguez P, Roy P, Guiton PS (2020) Transcriptional ups and downs: patterns of gene expression in the life cycle of Toxoplasma gondii. Microbes Infect 22(10):525–533

    Article  CAS  Google Scholar 

  • Shen B, Sibley LD (2014) Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion. Proc Natl Acad Sci U S A 111(9):3567–3572

    Article  CAS  Google Scholar 

  • Smith NS, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG (2021) Control of human toxoplasmosis. Int J Parasitol 51(2–3):95–121

    Article  CAS  Google Scholar 

  • Uboldi AD, McCoy JM, Blume M, Gerlic M, Ferguson DJP, Dagley LF, Beahan CT, Stapleton DI, Gooley PR, Bacic A, Masters SL, Webb AI, McConville MJ, Tonkin CJ (2015) Regulation of starch stores by a Ca2+-dependent protein kinase is essential for viable cyst development in Toxoplasma gondii. Cell Host Microbe 18(6):670–681

    Article  CAS  Google Scholar 

  • Wang S, Hassan IA, Liu X, Xu L, Yan R, Song X, Li X (2015) Immunological changes induced by Toxoplasma gondii glutathione-S-transferase (TgGST) delivered as a DNA vaccine. Res Vet Sci 99:157–164

    Article  CAS  Google Scholar 

  • Wang ZD, Wang C, Liu HH, Ma HY, Li ZY, Wei F, Zhu XQ, Liu Q (2017) Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: a systematic review and meta-analysis. Lancet HIV 4(4):e177–e188

    Article  Google Scholar 

  • Wang JL, Li TT, Elsheikha HM, Chen K, Cong W, Yang WB, Bai MJ, Huang SY, Zhu XQ (2018) Live attenuated Pru:Δcdpk2 strain of Toxoplasma gondii protects against acute, chronic, and congenital toxoplasmosis. J Infect Dis 218(5):768–777

    Article  CAS  Google Scholar 

  • Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ (2019a) Advances in the development of anti-Toxoplasma gondii vaccines: challenges, opportunities, and perspectives. Trends Parasitol 35(3):239–253

    Article  CAS  Google Scholar 

  • Wang ZX, Zhou CX, Calderón-Mantilla G, Petsalaki E, He JJ, Song HY, Elsheikha HM, Zhu XQ (2019b) iTRAQ-based global phosphoproteomics reveals novel molecular differences between Toxoplasma gondii strains of different genotypes. Front Cell Infect Microbiol 29:307

    Article  Google Scholar 

  • Wang JL, Bai MJ, Elsheikha HM, Liang QL, Li TT, Cao XZ, Zhu XQ (2020a) Novel roles of dense granule protein 12 (GRA12) in Toxoplasma gondii infection. FASEB J 34(2):3165–3178

    Article  CAS  Google Scholar 

  • Wang JL, Liang QL, Li TT, He JJ, Bai MJ, Cao XZ, Elsheikha HM, Zhu XQ (2020b) Toxoplasma gondii tkl1 deletion mutant is a promising vaccine against acute, chronic, and congenital toxoplasmosis in mice. J Immunol 204(6):1562–1570

    Article  CAS  Google Scholar 

  • Wu M, An R, Zhou N, Chen Y, Cai H, Yan Q, Wang R, Luo Q, Yu L, Chen L, Du J (2022) Toxoplasma gondii CDPK3 controls the intracellular proliferation of parasites in macrophages. Front Immunol 13:905142

    Article  CAS  Google Scholar 

  • Zhang D, Jiang N, Chen Q (2019) ROP9, MIC3, and SAG2 are heparin-binding proteins in Toxoplasma gondii and involved in host cell attachment and invasion. Acta Trop 192:22–29

    Article  CAS  Google Scholar 

  • Zhang H, Liu J, Ying Z, Li S, Wu Y, Liu Q (2020) Toxoplasma gondii UBL-UBA shuttle proteins contribute to the degradation of ubiquitinylated proteins and are important for synchronous cell division and virulence. FASEB J 34(10):13711–13725

    Article  CAS  Google Scholar 

  • Zhou DH, Wang ZX, Zhou CX, He S, Elsheikha HM, Zhu XQ (2017) Comparative proteomic analysis of virulent and avirulent strains of Toxoplasma gondii reveals strain-specific patterns. Oncotarget 8(46):80481–80491

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Bang Shen, Huazhong Agricultural University for providing the pSAG1-Cas9-SgUPRT and pUPRT-DHFR-D vectors.

Funding

Project support was provided by the National Natural Science Foundation of China (Grant No. 32002306), Fundamental Research Funds of the Chinese Academy of Agricultural Sciences (Grant No. 1610032021017), the Fund for Shanxi “1331 Project” (Grant No. 20211331–13), the Agricultural Science and Technology Innovation Program (ASTIP) of China (Grant No. CAAS-ASTIP-2016-LVRI-03), the Yunnan Expert Workstation (Grant No. 202005AF150041), and the Veterinary Public Health Innovation Team of Yunnan Province (Grant No. 202105AE160014).

Author information

Authors and Affiliations

Authors

Contributions

Xing-Quan Zhu, Meng Wang, Jin-Lei Wang, and Hany M. Elsheikha conceived and designed the study. Xin-Cheng Wang performed the experiments, analysed the data, and wrote the manuscript. Ting-Ting Li, Xiao-Nan Zheng, and Dan-Yu Zhao participated in the implementation of the study. Meng Wang and Jin-Lei Wang contributed reagents/materials/analysis tools. Hany M. Elsheikha, Xing-Quan Zhu, and Meng Wang critically revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xing-Quan Zhu.

Ethics declarations

Ethics approval

All animal studies were carried out in accordance with protocols reviewed and approved by the Research Ethics Committee of Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences. All animals were handled strictly according to the Animal Ethics Procedures and Guidelines of the People’s Republic of China. All efforts were made to minimize the number of mice used in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Julia Walochnik

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Fig. 5

The schematic diagram of the predicted functional domains in each CBDP protein. EGF, epidermal growth factor-like domain; EGF-CA, calcium- binding EGF-like domain; EGF-like, EGF domain, unclassified subfamily. The putative functional domains of the CBDP proteins were predicated by the SMART algorithm (http://smart.embl-heidelberg.de). The blue rectangles represent the transmembrane helix region, as detected by the TMHMM v2.0 program. (PNG 496 kb)

Supplementary file1 (TIF 828 KB)

Supplemental Fig. 6

The expression profiles of Toxoplasma gondii CBDPs. A The expression profile of 3 CBDP genes of T. gondii RH strain presented by the cell cycle phases. B The expression profiles of 3 CBDP genes in Type I (RH and GT1), Type II (Pru and ME49), and Type III (CTG and VEG) strains. C The expression profiles of 3 CBDP genes related to the parasite life cycle stages (oocyst, tachyzoite and bradyzoite). Expression profile of 3 CBDP genes of the oocysts recovered from cat feces at 0 day (unsporulated), 4 days (4 days sporulated), and 10 days (10 days sporulated), tachyzoites grown for 2 days in HFF cells (2 days in vitro), bradyzoites grown in HFF cells for 4 days and 8 days (4 day in vitro and 8 days in vitro), and 21 days tissue cyst-containing bradyzoites harvested from infected mouse brains (21 days in vivo). Each line represents the expression value of the corresponding gene. (PNG 528 kb)

Supplementary file2 (TIF 1465 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XC., Li, TT., Elsheikha, H.M. et al. Effect of deleting four Toxoplasma gondii calcium-binding EGF domain-containing proteins on parasite replication and virulence. Parasitol Res 122, 441–450 (2023). https://doi.org/10.1007/s00436-022-07739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07739-6

Keywords

Navigation