Skip to main content
Log in

Advancing understanding of the taxonomy and diversity of the genus Contracaecum in the great white pelican (Pelecanus onocrotalus)

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Despite the wide distribution and health importance of anisakids of the genus Contracaecum, epidemiological data on their occurrence in definitive bird hosts are scarce, particularly from certain parts of the world that represent important wintering sites or migration stopovers for different bird species. In the present study, Contracaecum spp. infecting six great white pelicans (Pelecanus onocrotalus) in Israel were identified using light and scanning electron microscopy and phylogenetic analyses of nuclear internal transcribed spacer (ITS) and mitochondrial cytochrome c oxidase II (cox2). A PCR–RFLP method was also developed and applied to screen large numbers of Contracaecum parasites. Most (415/455) worms recovered were C. micropapillatum, followed by C. gibsoni (31/455), C. quadripapillatum (8/455), and C. multipapillatum E (1/455). Contracaecum micropapillatum from Israel and C. bancrofti from Australia are distinguishable by cox2 but less well resolved with ITS sequences, and could not be distinguished morphologically. Worms with cox2 matching C. gibsoni had ITS matching specimens identified as C. multipapillatum A. To the authors’ knowledge, this represents the first of such studies in Israel and provides useful data on the ecology and distribution of different Contracaecum species of health and economic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The DNA sequences generated in this study have been deposited on the public database GenBank.

References

  • Anderson RC (2000) Nematode parasites of vertebrates: their development and transmission, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  • Ángeles-Hernández JC, Gómez-de Anda FR, Reyes-Rodríguez NE, Vega-Sánchez V, García-Reyna PB, Campos-Montiel RG, Calderón-Apodaca NL, Salgado-Miranda C, Zepeda-Velázquez AP (2020) Genera and species of the Anisakidae family and their geographical distribution. Animals 10:2374. https://doi.org/10.3390/ani10122374

    Article  Google Scholar 

  • Baruš V, Sergeeva TP, Sonin MD, Ryzhikov KM (1978) Helminths of fish-eating birds of the Palaearctic Region: Nematoda. In: Rysavy B, Ryzhikov KM (eds) Helminths of fish-eating birds. Springer, Praha, p 318

    Chapter  Google Scholar 

  • Blouin MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32:527–531. https://doi.org/10.1016/s0020-7519(01)00357-5

    Article  CAS  Google Scholar 

  • Cram EB (1927) Bird parasites of the nematode suborders Strongylata, Ascaridata, and Spirurata. Bull US Natl Mus 492. https://doi.org/10.5479/si.03629236.140.1

  • Crivelli AJ, Schreiber RW (1984) Status of Pelecanidae. Biol Conserv 30:147–156

    Article  Google Scholar 

  • Crivelli AJ, Leshem Y, Mitchev T, Jerrentrup H (1991) Where do palearctic great white pelicans (Pelecanus onocrotalus) presently overwinter? Rev Ecol-Terre Vie 46:145–171

    Google Scholar 

  • D’Amelio S, Lombardo F, Pizzarelli A, Bellini I, Cavallero S (2020) Advances in omic studies drive discoveries in the biology of Anisakid nematodes. Genes 11:801. https://doi.org/10.3390/genes11070801

    Article  CAS  Google Scholar 

  • Davidovich N, Tedesco P, Caffara M, Yasur-Landau D, Gustinelli A, Drabkin V, Minkova E, Aflalo O, Morick D, Fioravanti ML (2022) Morphological description and molecular characterization of Contracaecum larvae (Nematoda: Anisakidae) parasitizing market-size hybrid tilapia (Oreochromis aureus x Oreochromis niloticus) and red drum (Sciaenops ocellatus) farmed in Israel. Food Waterborne Parasitol 26:e00147. https://doi.org/10.1016/j.fawpar.2022.e00147

    Article  Google Scholar 

  • Fagerholm HP (1989) Intra-specific variability of the morphology in a single population of the seal parasite Contracaecum osculatum (Rudolphi) (Nematoda: Ascaridoidea), with a redescription of the species. Zool Scr 18:33–41. https://doi.org/10.1111/j.1463-6409.1989.tb00121.x

    Article  Google Scholar 

  • Fagerholm HP, Overstreet RM (2008) Ascaridoid Nematodes: Contracaecum, Porrocaecum, and Baylisascaris. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases of wild birds. Wiley-Blackwell, Iowa, USA, pp 413–433. https://doi.org/10.1002/9780813804620.ch24

  • Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamouda AH, Younis AE (2022) Molecular characterization of zoonotic anisakid Contracaecum spp. larvae in some fish species from Lake Nasser. Egypt Aquac Res 53:2548–2561. https://doi.org/10.1111/are.15774

    Article  CAS  Google Scholar 

  • Hartwich G (1964) Revision der vogelparasitischen nematoden Mitteleuropas II. Die gattung Contracaecum Railliet and Henry, 1912 (Ascaridoidea). Mitt Zool Mus Berl 40:15–53

    Google Scholar 

  • Johnston TH, Mawson PM (1941) Ascaroid nematodes from Australian birds. Trans R Soc S Aust 65:110–115

    Google Scholar 

  • Kennedy M, Taylor SA, Nádvorník P, Spencer HG (2013) The phylogenetic relationships of the extant pelicans inferred from DNA sequence data. Mol Phyl Evol 66:215–222. https://doi.org/10.1016/j.ympev.2012.09.034

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  • Kumar S, Periyasamy A, Rao NVR, Sunil SS, Kumara HN, Sundararaj P, Chidananda G, Sathish A (2019) Multiple infestations of gastrointestinal parasites—probable cause for high mortality of Spot-billed Pelican (Pelecanus philippensis) at Kokrebellur Community Reserve, India. Int J Parasitol Parasites Wildl 9:68–73. https://doi.org/10.1016/j.ijppaw.2019.04.001

    Article  Google Scholar 

  • Li L, Gibson DI, Zhang LP (2016) An annotated catalogue of the ascaridoid nematode parasites of Chinese vertebrates. Syst Parasitol 93:1–35. https://doi.org/10.1007/s11230-015-9617-5

    Article  CAS  Google Scholar 

  • Mattiucci S, Nascetti G (2006) Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Parasite 13(2):99–113. https://doi.org/10.1051/parasite/2006132099

    Article  CAS  Google Scholar 

  • Mattiucci S, Nascetti G, Dailey M, Webb SC, Barros N, Cianchi R, Bullini L (2005) Evidence for a new species of Anisakis Dujardin, 1845: Morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Syst Parasitol 61:157–171. https://doi.org/10.1007/s11230-005-3158-2

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host parasite co-evolutionary processes. Adv Parasitol 66:47–148. https://doi.org/10.1016/S0065-308X(08)00202-9

    Article  Google Scholar 

  • Mattiucci S, Paoletti M, Webb SC, Sardella N, Timi JT, Berland B, Nascetti G (2008) Genetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Host, 1932 (Nematoda: Anisakidae) from pinnipeds based on mitochondrial cox2 sequences, and congruence with allozyme data. Parasite 15:408–419. https://doi.org/10.1051/parasite/2008153408

    Article  CAS  Google Scholar 

  • Mattiucci S, Paoletti M, Solorzano AC, Nascetti G (2010) Contracaecum gibsoni n. sp. and C. overstreeti n. sp. (Nematoda: Anisakidae) from the dalmatian pelican Pelecanus crispus (L.) in Greek waters: genetic and morphological evidence. Syst Parasitol 75:207–224. https://doi.org/10.1007/s11230-009-9220-8

    Article  Google Scholar 

  • Mattiucci S, Sbaraglia GL, Palomba M, Filippi S, Paoletti M, Cipriani P, Nascetti G (2020) Genetic identification and insights into the ecology of Contracaecum rudolphii A and C. rudolphii B (Nematoda: Anisakidae) from cormorants and fish of aquatic ecosystems of Central Italy. Parasitol Res 119:1243–1257. https://doi.org/10.1007/s00436-020-06658-8

    Article  Google Scholar 

  • McDaniel B, Patterson I (1966) Nematode infestation of a white pelican found along the gulf coast of Texas. Southwest Nat 11:312–312

    Article  Google Scholar 

  • Nadler SA, Hudspeth DSS (2000) Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol 86:380–393. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2

    Article  CAS  Google Scholar 

  • Nascetti G, Bullini L, Cianchi R, Paggi L, Orecchia P, Mattiucci S, D’Amelio S, Berland B (1990) Genetic relationships among anisakid species belonging to the genera Contracaecum and Phocascaris. Bull Soc Fr Parasitol 8:261

    Google Scholar 

  • Otachi EO, Szostakowska B, Jirsa F, Fellner-Frank C (2014) Parasite communities of the elongate tigerfish Hydrocynus forskahlii (Cuvier 1819) and redbelly tilapia Tilapia zillii (Gervais 1848) from Lake Turkana, Kenya: influence of host sex and size. Acta Parasitol 60:9–20. https://doi.org/10.1515/ap-2015-0002

    Article  Google Scholar 

  • Paggi L, Mattiucci S, Gibson DI, Berland B, Nascetti G, Cianchi R, Bullini L (2000) Pseudoterranova decipiens species A and B (Nematoda: Ascaridoidea): Nomenclatural designation, morphological diagnostic characters and genetic markers. Syst Parasitol 45:185–197. https://doi.org/10.1023/a:1006296316222

    Article  CAS  Google Scholar 

  • Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134:763–776. https://doi.org/10.1017/S0031182006002150

    Article  CAS  Google Scholar 

  • Pronkina NV, Spiridonov SE (2018) Morphological and molecular characterization of anisakid juveniles from the golden grey mullet of the Black Sea. Russ J Nematol 26:87–92. https://doi.org/10.24411/0869-6918-2018-10008

    Article  Google Scholar 

  • Rokicki J, Sołtysiak Z, Dziekońska-Rynko J, Borucińska J (2011) Pathology associated with Contracaecum rudolphii (Nematoda: Anisakidae) infection in the great cormorant Phalacrocorax carbo (L. 1758). Helminthol 48:28–35. https://doi.org/10.2478/s11687-011-0006-6

    Article  Google Scholar 

  • Saad AI, Younis AE, Rabei JM (2018) Experimental life cycle of Contracaecum quadripapillatum n. sp. in white pelican (Pelecanus erythrorhynchos) at Lake Nasser, Egypt: morphological and genetic evidences. J Egypt Soc Parasitol 48:587–598

    Article  Google Scholar 

  • Sarig S (1990) The fish culture industry in Israel in 1989. lsraeli J Aquacult Bamidgeh 42:39–45

    Google Scholar 

  • Scott DA, Carp E (1982) A midwinter survey of wetlands in Mesopotamia, Iraq, 1979. Sandgrouse 4:60–76

    Google Scholar 

  • Shamsi S, Aghazadeh-Meshgi M (2011) Morphological and genetic characterisation of selected Contracaecum (Nematoda: Anisakidae) larvae in Iran. Iran J Fish Sci 10:356–361

    Google Scholar 

  • Shamsi S, Gasser R, Beveridge I, Shabani AA (2008) Contracaecum pyripapillatum n. sp. (Nematoda: Anisakidae) and a description of C. multipapillatum (von Drasche, 1882) from the Australian pelican Pelecanus Conspicillatus. Parasitol Res 103:1031–1039. https://doi.org/10.1007/s00436-008-1088-z

    Article  Google Scholar 

  • Shamsi S, Norman R, Gasser R, Beveridge I (2009) Redescription and genetic characterization of selected Contracaecum spp. (Nematoda: Anisakidae) from various hosts in Australia. Parasitol Res 104:1507–1525. https://doi.org/10.1007/s00436-009-1357-5

    Article  Google Scholar 

  • Shamsi S, Steller E, Chen Y (2018) New and known zoonotic nematode larvae within selected fish species from Queensland waters in Australia. Int J Food Microbiol 272:73–82. https://doi.org/10.1016/j.ijfoodmicro.2018.03.007

    Article  Google Scholar 

  • Shamsi S, Turner A, Wassens S (2018) Description and genetic characterization of a new Contracaecum larval type (Nematoda: Anisakidae) from Australia. J Helminthol 92:216–222. https://doi.org/10.1017/S0022149X17000360

    Article  CAS  Google Scholar 

  • Shamsi S, Stoddart A, Smales L, Wassens S (2019) Occurrence of Contracaecum bancrofti larvae in fish in the Murray-Darling Basin. J Helminthol 93:574–579. https://doi.org/10.1017/S0022149X1800055X

    Article  CAS  Google Scholar 

  • Stossich M (1890) Elminti della Croazia. Glasnik Hrvatskoga Naravoslovnoga Društva 5:129–136

    Google Scholar 

  • Stossich M (1896) Il Genere Ascaris Linné. Lavoro monografico. Boll Soc Adriat Sci Nat Trieste 17:9–114

    Google Scholar 

  • Thabit A, Abdallah ESH (2022) Morphological and molecular identification of third-stage Contracaecum larvae (Nematoda: Anisakidae) parasitizing Nile perch Lates niloticus in Egypt. Aquac Res 53:4869–4881. https://doi.org/10.1111/are.15980

    Article  CAS  Google Scholar 

  • Valentini A, Mattiucci S, Bondanelli P, Webb SC, Mignucci-Giannone AA, Colom-Llavina MM, Nascetti G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J Parasitol 92:156–166. https://doi.org/10.1645/GE-3504.1

    Article  CAS  Google Scholar 

  • Valles-Vega I, Molina-Fernández D, Benítez R, Hernández-Trujillo S, Adroher FJ (2017) Early development and life cycle of Contracaecum multipapillatum s.l. from a brown pelican Pelecanus occidentalis in the Gulf of California, Mexico. Dis Aquat Org 125:167–178. https://doi.org/10.3354/dao03147

    Article  CAS  Google Scholar 

  • Van Der Ven J (1987) Asian waterfowl 1987. Midwinter bird observations in most Asian countries. IWB, Slimbridge, England

  • Van Der Ven J (1988) Asian waterfowl 1988. Midwinter bird observations in most Asian countries. IWRB, Slimbridge, England

  • Yamaguti S (1935) Studies on the helminth fauna of Japan. Part 12. Avian nematodes. I J J Zool 6:403–431

    Google Scholar 

  • Yamaguti S (1961) Systema Helminthum. The Nematodes of Vertebrates. Part I. Interscience, New York, USA, 3:237–241

  • Zhu X, Gasser RB, Podolska M, Chilton NB (1998) Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA Sequences. Int J Parasitol 28:1911–1921. https://doi.org/10.1016/S0020-7519(98)00150-7

    Article  CAS  Google Scholar 

  • Zhu X, D’Amelio S, Paggi L, Gasser RB (2000) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitol Res 86:677–683. https://doi.org/10.1007/pl00008551

    Article  CAS  Google Scholar 

  • Zhu XQ, D’Amelio S, Gasser RB, Yang TB, Paggi L, He F, Lin RQ, Song HQ, Ai L, Li AX (2007) Practical PCR tools for the delineation of Contracaecum rudolphii A and Contracaecum rudolphii B (Ascaridoidea: Anisakidae) using genetic markers in nuclear ribosomal DNA. Mol Cell Probes 21:97–102. https://doi.org/10.1016/j.mcp.2006.08.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the constructive comments of anonymous reviewers on early versions of this manuscript, and express particular thanks to the editor dr. Shokoofeh Shamsi, who kindly provided specimens of C. bancrofti from Australia.

Funding

This study was supported by the Israeli Veterinary Services and by the University of Bologna, Italy. Scanning Electron Microscopy acquired thanks to the Department of Excellence Project 2018–2022 funded by the Italian Ministry of Education, Universities and Research. SAL was supported by the National Science Foundation (DEB award 1845021).

Author information

Authors and Affiliations

Authors

Contributions

MC and PT wrote the main manuscript text, carried out the analyses, and prepared all the figures. MN and MN provided the technical support for SEM and molecular analyses. ND and RK carried out the sampling and necropsies. SL carried out the multivariate analysis and revised the manuscript. AG and MLF revised the manuscript. All authors reviewed the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Monica Caffara.

Ethics declarations

Ethical approval

“Not applicable”.

Consent to participate

“Not applicable”.

Consent for publication

“Not applicable”.

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Shokoofeh Shamsi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caffara, M., Tedesco, P., Davidovich, N. et al. Advancing understanding of the taxonomy and diversity of the genus Contracaecum in the great white pelican (Pelecanus onocrotalus). Parasitol Res 122, 315–331 (2023). https://doi.org/10.1007/s00436-022-07732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07732-z

Keywords

Navigation