Skip to main content

Advertisement

Log in

Comparative transcriptomic analysis of the larval and adult stages of Dibothriocephalus dendriticus (Cestoda: Diphyllobothriidea)

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Tapeworms of the genus Dibothriocephalus are widely distributed throughout the world, some of which are agents of human diphyllobothriasis, one of the most important fish-borne zoonoses caused by a cestode parasite. Genomic and transcriptomic data can be used to develop future diagnostic tools and epidemiological studies. The present work focuses on a comparative analysis of the transcriptomes of adult and plerocercoid D. dendriticus and the identification of their differentially expressed genes (DEGs). Transcriptome assembly and analysis yielded and annotated 35,129 unigenes, noting that 16,568 (47%) unigenes were not annotated in known databases, which may indicate a unique set of expressed transcripts for D. dendriticus. A total of 8022 differentially expressed transcripts were identified, including 3225 upregulated and 4797 downregulated differentially expressed transcripts from the plerocercoid and adult animals. The analysis of DEGs has shown that among the most differentially expressed genes, there are important genes characteristic of each stage. Thus, several genes are characteristic of D. dendriticus plerocercoids, including fatty acid–binding protein and ferritin. Among the most highly expressed DEGs of the adult stage of D. dendriticus is the Kunitz-type serine protease inhibitor, in two putative isoforms. The analyses of GO and KEGG metabolic pathways revealed that a large number of the DEGs of D. dendriticus are associated with the biosynthesis of various substances such as arginine and folate, as well as with various metabolic pathways such as galactose metabolism, selenocompound metabolism, and phosphonate and phosphinate metabolism. This will contribute to further research aimed at identifying targets for new generation drugs and the development of specific vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The RNA-seq data were submitted to the SRA database under accession numbers SRR19832170, SRR19832171, and SRR19832172. Additional data can be found in supplementary files.

References

  • Alroy KA, Gilman RH (2020) Tapeworm infections. In: Ryan ET, Hill DR, Solomon T, Aronson NE, Endy TP (eds) Hunter’s tropical medicine and emerging infectious diseases. Elsevier, Sidney, pp 932–940

    Chapter  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Alvite A, Esteves A (2012) Lipid binding proteins from parasitic Platyhelminthes. Front Physiol 3:363. https://doi.org/10.3389/fphys.2012.00363

    Article  Google Scholar 

  • Alvite G, Canclini L, Corvo I, Esteves A (2008) Two novel Mesocestoides vogae fatty acid binding proteins: functional and evolutionary implications. FEBS J 275:107–116

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Nat Preced https://doi.org/10.1038/npre.2010.4282.1

  • Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H (2015) Diverse applications of environmental DNA methods in parasitology. Trends Parasitol 31:499–513

    Article  CAS  Google Scholar 

  • Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131:568–580

    Article  Google Scholar 

  • Becker M, Kalinna BH, Waine GJ, McManus DP (1994) Gene cloning, overproduction and purification of a functionally active cytoplasmic fatty acid-binding protein (Sj-FABPc) from the human blood fluke Schistosoma japonicum. Gene 148:321–325

    Article  CAS  Google Scholar 

  • Benitez L, Harrison LJ, Parkhouse RM, Garate T (1996) Sequence and immunogenicity of Taenia saginata ferritin. Mol Biochem Parasitol 82:113–116

    Article  CAS  Google Scholar 

  • Bozas SE, Panaccio M, Creaney J, Dosen M, Parsons JC, Vlasuk GV, Walker ID, Spithill TW (1995) Characterisation of a novel Kunitz-type molecule from the trematode Fasciola hepatica. Mol Biochem Parasitol 74(1):19–29

    Article  CAS  Google Scholar 

  • Caban-Hernandez K, Gaudier JF, Espino AM (2012) Characterization and differential expression of a ferritin protein from Fasciola hepatica. Mol Biochem Parasitol 182:54–61

    Article  CAS  Google Scholar 

  • Chizhova TP, Hoffman-Kadoshnikova PB (1960) A natural breeding ground of diphyllobothriosis in Baikal and its structure. Med Parasitol Parasitic Dis 29:165–176 ((in Russian))

    Google Scholar 

  • Delyamure SL, Skryabin AS, Serdyukov AM (1985) Essentials of cestodology. Diphyllobothriata — flatworm parasites of man, mammals and birds. Vol. XI. Nauka, Moscow (In Russian)

  • Dietzel J, Hirzmann J, Preis D, Symmons P, Kunz W (1992) Ferritins of Schistosoma mansoni: sequence comparison and expression in female and male worms. Mol Biochem Parasitol 50:245–254

    Article  CAS  Google Scholar 

  • Djuranovic SP, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick AJ, Moss WN, Szczesny P, Djuranovic S (2020) Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife. 9:e57799. https://doi.org/10.7554/eLife.57799

    Article  CAS  Google Scholar 

  • Dupouy-Camet J, Peduzzi R (2004) Current situation of human diphyllobothriasis in Europe. Euro Surveill 9:31–35

    Article  CAS  Google Scholar 

  • Dupouy-Camet J, Diphyllobothrium YH (2010). In: Liu D (ed) Molecular detection of foodborne pathogens. Taylor and Francis, London, New York, pp 781–788

    Google Scholar 

  • Emerit J, Beaumont C, Trivin F (2001) Iron metabolism, free radicals, and oxidative Injury. Biomed Pharmacother 55:333–339

    Article  CAS  Google Scholar 

  • Erath J, Djuranovic S, Djuranovic SP (2019) Adaptation of translational machinery in malaria parasites to accommodate translation of poly-adenosine stretches throughout its life cycle. Front Microbiol 10:2823. https://doi.org/10.3389/fmicb.2019.02823

    Article  Google Scholar 

  • Ersfeld K, Craig PS (1995) Cloning and immunological characterisation of Echinococcus granulosus ferritin. Parasitol Res 81:382–387

    Article  CAS  Google Scholar 

  • Esteves A, Dallagiovanna B, Ehrlich R (1993) A developmentally regulated gene of Echinococcus sgranulosus codes for a 15.5-kilodalton polypeptide related to fatty acid binding proteins. Mol Biochem Parasitol 58:215–222

    Article  CAS  Google Scholar 

  • Esteves A, Portillo V, Ehrlich R (2003) Genomic structure and expression of a gene coding for a new fatty acid binding protein from Echinococcus granulosus. Biochem Biophys Acta 1631:26–34

    CAS  Google Scholar 

  • Estuningsih SE, Smooker PM, Wiedosari E, Widjajanti S, Vaiano S, Partoutomo S, Spithill TW (1997) Evaluation of antigens of Fasciola gigantica as vaccines against tropical fasciolosis in cattle. Int J Parasitol 27:1419–1428

    Article  CAS  Google Scholar 

  • Glanfield A, McManus DO, Smyth DJ, Lovas EM, Loukas A, Gobert GN, Jones MK (2010) A cytochrome b561 with ferric reductase activity from the parasitic blood fluke Schistosoma Japonicum. Plos Negl Trop Dis 4:e884

    Article  Google Scholar 

  • Glanfield A, McManus DP, Anderson GJ, Jones MK (2007) Pumping iron: a potential target for novel therapeutics against schistosomes. Trends Parasitol 23:583–588

    Article  CAS  Google Scholar 

  • Gonzalez S, Flo M, Margenat M, Duran R, Gonzalez-Sapienza G, Grana M, Parkinson J, Maizels RM, Salinas G, Alvarez B, Fernández C (2009) A family of diverse Kunitz inhibitors from Echinococcus granulosus potentially involved in host-parasite cross-talk. PLoS ONE 9:e7009

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  Google Scholar 

  • Gustafsson MKS (1990) The cells of a cestode: Diphyllobothrium dendriticum as a model in cell biology. In: Gustafsson MKS and Reuter M (eds) The Early Brain Proc Symp Invert Neurobiol. Acta Acad Series B 50, Abo Academy Press, Vaasa, 13–44

  • Guydosh NR, Green R (2017) Translation of poly(A) tails leads to precise mRNA cleavage. RNA 23:749–761

    Article  CAS  Google Scholar 

  • Hawdon JM, Datu B, Crowell M (2003) Molecular cloning of a novel multidomain Kunitz-type proteinase inhibitor from the hookworm Ancylostoma caninum. J Parasitol 89(2):402–407

    Article  CAS  Google Scholar 

  • Holzmuller P, Geiger A, Nzoumbou-Boko R, Pissarra J, Hamrouni S, Rodrigues V, Dauchy F-A, Lemesre J-L, Vincendeau P, Bras-Gonçalves R (2018) Trypanosomatid infections: how do parasites and their excreted–secreted factors modulate the inducible metabolism of L-arginine in macrophages? Front Immunol 9:778. https://doi.org/10.3389/fimmu.2018.00778

    Article  CAS  Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115–2122

    Article  CAS  Google Scholar 

  • Jones MK, McManus DP, Sivadorai P, Glanfield A, Moertel L, Belli SI, Gobert GN (2007) Tracking the fate of iron in early development of human blood flukes. Int J Biochem Cell Biol 39:1646–1658

    Article  CAS  Google Scholar 

  • Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle

  • KEGG (2022) https://www.genome.jp/kegg

  • Kim TY, Joo IJ, Kang SY, Cho SY, Hong SJ (2002) Paragonimus westermani: molecular cloning, expression, and characterization of a recombinant yolk ferritin. Exp Parasitol 102:194–200

    Article  CAS  Google Scholar 

  • Kuchta R, Brabec J, Kubáčková P, Scholz T (2013) Tapeworm Diphyllobothrium dendriticum (Cestoda) – neglected or emerging human parasite? PLOS Negl Trop Dis 12:e2535

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  • Levi S, Rovida E (2015) Neuroferritinopathy: from ferritin structure modification to pathogenetic mechanism. Neurobiol Dis 81:134–143

    Article  CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  Google Scholar 

  • Lopez AA, Dwilow R, Bullard J, Mujawar Q (2021) A case of refractory Diphyllobothriasis in a young pediatric patient. J Pediatric Infect Dis Soc 10:210–212

    Article  Google Scholar 

  • Lopez-Soto F, Gonzalez-Robles A, Salazar-Villatoro L, Leon-Sicairos N, Pina-Vazquez C, Salazar EP, de la Garza M (2009) Entamoeba histolytica uses ferritin as an iron source and internalises this protein by means of clathrin-coated vesicles. Int J Parasitol 39:417–426

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  • Lugo-Villarino G, Cougoule C, Meunier E, Rombouts Y, Vérollet C, Balboa L (2019) Editorial: The mononuclear phagocyte system in infectious disease. Front Immunol 10:1443. https://doi.org/10.3389/fimmu.2019.01443

    Article  CAS  Google Scholar 

  • Lysenko AY, Vladimova MG, Kondrashin AV, Majori J (2002) Clinical parasitology. A guide. WHO, Geneva (in Russian)

  • Meyron-Holtz EG, Moshe-Belizowski S, Cohen LA (2011) A possible role for secreted ferritin in tissue iron distribution. J Neural Transm 118:337–347

    Article  CAS  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  Google Scholar 

  • Mohamed W, Sethi S, Darji A, Mraheil MA, Hain T, Chakraborty T (2010) Antibody targeting the ferritin-like protein controls Listeria infection. Infect Immun 78:3306–3314

    Article  CAS  Google Scholar 

  • Pronin NM, Pronina SV, Amagzayeva GS, Buzgeyeva AA, Bazarova TB, Molchanov AD (2012) Dynamics of Coregonus migratorius (Coregonidae) Selenga population contamination with Diphyllobothrium dendriticum and Diphyllobothriosis morbidity in Buryatia Republic. Acta Biomed Sci 5:296–299 ((In Russian))

    Google Scholar 

  • Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J (2005) Dps/Dpr ferritin-like protein: insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis. Mol Microbiol 57:1086–1100

    Article  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320-325

    Article  CAS  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  CAS  Google Scholar 

  • Rodríguez-Pérez J, Rodrigues-Medina JR, García-Blanco MA, Hillyer GV (1992) Fasciola hepatica: molecular cloning, nucleotide sequence and expression of a gene encoding a polypeptide homologous to a Schistosoma mansoni fatty acid binding protein. Exp Parasitol 74:400–407

    Article  Google Scholar 

  • Rusinek OT (2008) Lake Baikal fish parasites: fauna, formation history In: Scientific and practical conference «The development of life in abiotic change on Earth» (Listvyanka village, Irkutsk region, 18–20 March 2008). Publishing house SB RAS, Novosibirsk, 430–440. (In Russian)

  • Scholz T, Garcia HH, Kuchta R, Wicht B (2009) Update on the human broad tapeworm (genus Diphyllobothrium), including clinical relevance. Clin Microbiol Rev 22:146–160

    Article  CAS  Google Scholar 

  • Scholz T, Kuchta R, Brabec J (2019) Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: recent progress and future challenges. Int J Parasitol Parasites Wildl 9:359–369

    Article  Google Scholar 

  • Scythe (2016) https://github.com/vsbuffalo/scythe/. Accessed 15 Jan 2016

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  Google Scholar 

  • Smyth JD, McManus DP (1989) The physiology and biochemistry of cestodes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Son HG, Seo M, Ham S, Hwang W, Lee D, An SW, Artan M, Seo K, Kaletsky R, Arey RN, Ryu Y, Ha CM, Kim YK, Murphy CT, Roh T-Y, Nam HG, Lee SJ (2017) RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans 8:14749. https://doi.org/10.1038/ncomms14749

    Article  Google Scholar 

  • Tang Y, Cho PY, Kim TI, Hong SJ (2006) Clonorchis sinensis: molecular cloning, enzymatic activity, and localization of yolk ferritin. J Parasitol 92:1275–1280

    Article  CAS  Google Scholar 

  • The 50 helminth genomes initiative (2014) http://www.sanger.ac.uk/science/collaboration/50hgp. Accessed 6 October 2016

  • Thiel EC (1987) Ferritin: structure, gene regulation, cellular function in animals, plants, microorganisms. Ann Rev Biochem 56:289–315

    Article  Google Scholar 

  • Tsukamoto Y, Iriko H, Matsuo S (2019) Dibothriocephalus nihonkaiensis infection identified by pathological and genetic analyses – a case report and a recent literature review of human diphyllobothriasis. Hum Pathol: Case Reports 16:200298

    Google Scholar 

  • UniProtKB (2017) http://www.uniprot.org/downloads. Accessed 21 Jan 2017

  • Wang LC, Chen KY, Chang SH, Chung LY, Gan RCR, Cheng CJ, Tang P (2013) Transcriptome profiling of the fifth-stage larvae of Angiostrongylus cantonensis by next-generation sequencing. Parasitol Res 112:3193–3202

    Article  Google Scholar 

  • Wangwiwatsin A, Protasio AV, Wilson S, Owusu C, Holroyd NE, Sanders MJ, Doenhoff MJ, Rinaldi G, Berriman M (2020) Transcriptome of the parasitic flatworm Schistosoma mansoni during intra-mammalian development. PLoS Negl Trop Dis 14:e0007743

    Article  CAS  Google Scholar 

  • Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH (2014) Poly(A) RNA binding proteins and polyadenosine RNA: new members and novel functions. Wiley Interdiscip Rev RNA 5:601–622

    Article  CAS  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(Suppl 2):W316–W322. https://doi.org/10.1093/nar/gkr483

    Article  CAS  Google Scholar 

  • Yang D, Fu Y, Wu X, Xie Y, Nie H, Chen L, Nong X, Gu X, Wang S, Peng X, Yan N, Zhang R, Zheng W, Yang G (2012) Annotation of the transcriptome from Taenia pisiformis and its comparative analysis with three Taeniidae species. PLoS ONE 7:e32283

    Article  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14 https://doi.org/10.1186/gb-2010-11-2-r14

  • Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, Seppey M, Loetscher A, Kriventseva EV (2016) OrthoDB v9.1: cataloguing evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. OUP Accepted Manuscript Nucleic Acids Res 45:1–20

    Google Scholar 

  • Zhang XX, Cong W, Elsheikha HM, Liu GH, Ma JG, Huang WY, Zhao Q, Zhu XQ (2017) De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica. Infect Genet Evol 51:33–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Voronova Z.B. (General Basin Office for Fishing and Conservation of Water Biological Resources, Baikal Branch), Elisov A.V., Selivanov A.V., Popov A.G., and Nikonov D.P. (Republic State Institution “Buryat Station for Treatment of Animal Diseases”) for providing specimens; and Zhepkholova O.B. (Institute of General and Experimental Biology) for technical assistance.

Funding

Differential gene expression analysis, and Gene Ontology and KEGG enrichment analysis of differentially expressed genes were performed in the Institute of General and Experimental Biology with the financial support of the Russian Science Foundation project No. 22–24-00341. RNA extraction, construction of RNA-seq library, and sequencing were performed on the basis of the Genomics Shared Use Centre of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences. De novo assembly was performed in Limnological Institute, Zhejiang A&F University, and on HPC-cluster “Akademik V.M. Matrosov” (Irkutsk Supercomputer Center of SB RAS, https://hpc.icc.ru./en/.

Author information

Authors and Affiliations

Authors

Contributions

I.A.K. conceived the idea and designed the study, participated in sample collection, analyzed the data, and finalized the manuscript. T.V.S. conceived the idea and designed the study, analyzed the data, wrote the draft, and finalized the manuscript. K.V.K. analyzed the data. L.V.S. participated in sample collection. Y.Z. analyzed the data. Z.N.D. participated in sample collection. O.E.M. participated in sample collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ivan Alexandrovich Kutyrev.

Ethics declarations

Human and animal ethics

Animal procedures were performed under the guidelines of IGEB SB RAS Institutional Bioethics Commission Protocol #2.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Una Ryan.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorova, T.V., Kutyrev, I.A., Khabudaev, K.V. et al. Comparative transcriptomic analysis of the larval and adult stages of Dibothriocephalus dendriticus (Cestoda: Diphyllobothriidea). Parasitol Res 122, 145–156 (2023). https://doi.org/10.1007/s00436-022-07708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07708-z

Keywords

Navigation