Skip to main content

Advertisement

Log in

Structure-based in silico design and in vitro acaricidal activity assessment of Acacia nilotica and Psidium guajava extracts against Sarcoptes scabiei var. cuniculi

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Infestation by Sarcoptes scabiei var. cuniculi mite causes scabies in humans and mange in animals. Alternative methods for developing environmentally friendly and effective plant-based acaricides are now a priority. The purpose of this research was the in silico design and in vitro evaluation of the efficacy of ethanol extracts of Acacia nilotica and Psidium guajava plant leaves against S. scabiei. Chem-Draw ultra-software (v. 12.0.2.1076.2010) was used to draw 36 distinct compounds from these plants that were employed as ligands in docking tests against S. scabiei Aspartic protease (SsAP). With docking scores of − 6.50993 and − 6.16359, respectively, clionasterol (PubChem CID 457801) and mangiferin (PubChem CID 5281647) from A. nilotica inhibited the targeted protein SsAP, while only beta-sitosterol (PubChem CID 222284) from P. guajava interacted with the SsAP active site with a docking score of − 6.20532. Mortality in contact bioassay at concentrations of 0.25, 0.5, 1.0, and 2.0 g/ml was determined to calculate median lethal time (LT50) and median lethal concentration (LC50) values. Acacia nilotica extract had an LC50 value of 0.218 g/ml compared to P. guajava extract, which had an LC50 value of 0.829 g/ml at 6 h. These results suggest that A. nilotica extract is more effective in killing mites, and these plants may have novel acaricidal properties against S. scabiei. Further research should focus on A. nilotica as a potential substitute for clinically available acaricides against resistant mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All supplementary and raw data can be provided on request.

References

  • Abbassy MMS, Ibrahim HZ, Gab Alla MAA (2018) Evaluating the insecticidal and fungicidal efficiency of Acacia nilotica pods extract. J Plant Prot Pathol 9(5):283–289

    Google Scholar 

  • Abdelgaleil SA, Badawy ME, Mahmoud NF, Marei AE-SM (2019) Acaricidal activity, biochemical effects and molecular docking of some monoterpenes against two-spotted spider mite (Tetranychus urticae Koch). Pestic Biochem Physiol 156:105–115

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Ghaffar F, Al-Quraishy S, Sobhy H, Semmler M (2008) Neem seed extract shampoo, Wash Away Louse®, an effective plant agent against Sarcoptes scabiei mites infesting dogs in Egypt. Parasitol Res 104:145–148

    Article  PubMed  Google Scholar 

  • Abdoul GLB, Traore A, Ouedraogo M, Belemlilga M, Traore TK, Belemnaba L, Ouedraogo N, Lupu A, Ouedraogo S, Guissou IP (2019) Pharmacological study of trunk bark of Acacia nilotica var adansonii (Guill et Perr). o Ktze (Mimosaceae): assays, antioxidant and antispasmodic activities. J Drug Deliv Ther 9(3):524–530

    Google Scholar 

  • Abduljawad EA (2020) Review of some evidenced medicinal activities of Acacia nilotica. Archi Pharm Pract 11(4):20–25

    Google Scholar 

  • Aboelhadid SM, Mahrous LN, Hashem SA, Abdel-Kafy EM, Miller RJ (2016) In vitro and in vivo effect of Citrus limon essential oil against sarcoptic mange in rabbits. Parasit Res 115(8):3013–3020

    Article  CAS  Google Scholar 

  • Alam P, Albalwai T (2020) In-silico prediction of SSRs and functional annotation of ESTs from Catharanthus roseus. Int J Pharm Res Allied Sci 9(2):123–129

    CAS  Google Scholar 

  • Alasaad S, Rossi L, Heukelbach J, Pérez JM, Hamarsheh O, Otiende M, Zhu XQ (2013) The neglected navigating web of the incomprehensibly emerging and re-emerging Sarcoptes mite. Infect Genet Evol 17:253–259

    Article  PubMed  Google Scholar 

  • Albus U (2012) Guide for the care and use of laboratory animals, 8th edn. SAGE Publications Sage UK, London

    Google Scholar 

  • Ali A, Akhtar N, Khan BA, Khan MS, Rasul A, Khalid N, Waseem K, Mahmood T, Ali L (2012) Acacia nilotica: a plant of multipurpose medicinal uses. J Med Plant Res 6(9):1492-1496 nnj

    CAS  Google Scholar 

  • Ali R, Tabrez S, Rahman F, Alouffi AS, Alshehri BM, Alshammari FA, Alaidarous MA, Banawas S, Dukhyil AAB, Rub A (2021) Antileishmanial evaluation of bark methanolic extract of Acacia nilotica: in vitro and in silico studies. ACS Omega 6(12):8548–8560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali NM, Tahir HM, Khan MK, Khan KU, Mazhar B, Chaudhry M, Dar M, Faiqa S (2022) Synthesis of Cinnamum zeylanicum and Acacia nilotica extracts and their antibacterial activity against Staphylococcus aureus and Streptococcus pyogenes. J Oleo Sci 71(6):845–852

    Article  CAS  PubMed  Google Scholar 

  • Alli L, Adesokan A, Salawu O, Akanji M, Tijani A (2011) Anti-plasmodial activity of aqueous root extract of Acacia nilotica. Afr J Biochem Res 5(7):214–219

    CAS  Google Scholar 

  • Amal EE, Abdalla AS, Zuhair AA (2012) Preliminary studies on phytochemicals and larvicidal effects of Acacia nilotica L. extracts against Anopheles arabiensis Patton. Sci Res Essays 7(50):4253–4258

    Google Scholar 

  • Andrews RM, McCarthy J, Carapetis JR, Currie BJ (2009) Skin disorders, including pyoderma, scabies, and tinea infections. Pediatr Clin 56(6):1421–1440

    Google Scholar 

  • Aremu O, Olayemi O, Ajala T, Isimi Y, Oladosu P, Ekere K, Judith J, Emeje M (2020) Antibacterial evaluation of Acacia nilotica Lam (Mimosaceae) seed extract in dermatological preparations. J Res Pharm 24:170–181

    CAS  Google Scholar 

  • Arlian LG, Runyan RA, Estes SA (1984) Cross infestivity of Sarcoptes scabiei. J Am Acad Dermatol 10(6):979–986

    Article  CAS  PubMed  Google Scholar 

  • Azwanida N (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 4(196):2167–412

    Google Scholar 

  • Badar N, Iqbal Z, Khan MN, Akhtar MS (2011) In vitro and in vivo anthelmintic activity of Acacia nilotica (L.) Willd. ex Delile bark and leaves. Pak Vet J 31(3):185–191

    Google Scholar 

  • Badawy ME, Rabea EI (2018) Current applications in food preservation based on marine biopolymers. In: Polymers for food applications. Springer, Cham, pp 609–650

  • Bang M-H, Kim HH, Lee DY, Han MW, Baek YS, Chung DK, Baek N (2011) Anti-osteoporotic activities of fucosterol from sea mustard (Undaria pinnatifida). Food Sci Biotechnol 20(2):343–347

    Article  CAS  Google Scholar 

  • Benzineb E, Kambouche N, Hamiani A, Bellahouel S, Zitouni H, Toumi H (2019) Phenolics compounds and biological activity of leaves of Anabasis articulata, an Algerian Medicinal Plant. Int J Pharm Res Allied Sci 8(4):1–5

    CAS  Google Scholar 

  • Bin Sayeed MS, Ameen SS (2015) Beta-sitosterol: a promising but orphan nutraceutical to fight against cancer. Nutr Cancer 67(8):1216–1222

    Article  CAS  Google Scholar 

  • Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A (2013) Antimicrobial activities of leaf extracts of guava (Psidium guajava. L.) on two Gram-negative and Gram-positive bacteria. Int J Microbiol 2013:746165

    Article  PubMed  PubMed Central  Google Scholar 

  • Boly A, Belemlilga M, Traore A, Ouedraogo S, Guissou E (2018) Phytochemical study and in vitro anthelminthic properties studies of the trunk barks aqueous extract from Acacia nilotica var. adansonii (Guill and Perr). O Ktze 10(1):5–10

  • Borges FA, Almeida GD, Heckler RP, Lemes RT, Onizuka MK, Borges DG (2013) Anthelmintic resistance impact on tropical beef cattle productivity: effect on weight gain of weaned calves. Trop Anim Health Prod 45(3):723–727

    Article  PubMed  Google Scholar 

  • Chamizo-González F, Gordillo B, Heredia F (2021) Elucidation of the 3D structure of grape seed 7S globulin and its interaction with malvidin 3-glucoside: a molecular modeling approach. Food Chem 347:129014

    Article  PubMed  CAS  Google Scholar 

  • Childers MC, Daggett V (2017) Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng 2(1):9–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu S, Zhang F, Wang H, Xie L, Chen Z, Zeng W, Zhou Z, Hu F (2022) Aqueous extract of guava (Psidium guajava L.) leaf ameliorates hyperglycemia by promoting hepatic glycogen synthesis and modulating gut microbiota. Front Pharmacol 13:907702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie BJ, Harumal P, McKinnon M, Walton SF (2004) First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clin Infec Dis 39(1):e8–e12

    Article  CAS  Google Scholar 

  • de Souza CES, da Silva ARP, Gomez MCV, Rolóm M, Coronel C, da Costa JGM, Sousa AK, Rolim LA, de Souza FHS, Coutinho HDM (2017) Anti-trypanosoma, anti-leishmania and cytotoxic activities of natural products from Psidium brownianum Mart. ex DC. and Psidium guajava var. Pomifera analysed by LC–MS. Acta Trop 176:380–384

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Zhu N, Mo J (2014) In vitro bioassay methods for laboratory screening of novel mosquito repellents. Entomol Sci 17(4):365–370

    Article  Google Scholar 

  • DerMarderosian A, Beutler JA (2002) The review of natural products: the most complete source of natural product information. Facts and Comparisons

  • Dikti Vildina J, Kalmobe J, Djafsia B, Schmidt TJ, Liebau E, Ndjonka D (2017) Anti-Onchocerca and anti-Caenorhabditis activity of a hydro-alcoholic extract from the fruits of Acacia nilotica and some Proanthocyanidin derivatives. Molecules 22(5):748

    Article  PubMed Central  CAS  Google Scholar 

  • El-Mahmood MA (2009) The use of Psidium guajava Linn. in treating wound, skin and soft tissue infections. J Sci Res Essay 4(6):605–611

    Google Scholar 

  • El-Moamly AA (2021) Scabies as a part of the World Health Organization roadmap for neglected tropical diseases 2021–2030: what we know and what we need to do for global control. Trop Med Health 49(1):1–11

    Article  Google Scholar 

  • Finney D (1971) Probit analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gao W, Mahajan SP, Sulam J, Gray J (2020) Deep learning in protein structural modeling and design. J Patterns 1(9):100142

    Article  CAS  Google Scholar 

  • Goodford P (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857

    Article  CAS  PubMed  Google Scholar 

  • Gromiha MM, Nagarajan R, Selvaraj S (2019) Protein structural bioinformatics: an overview

  • Gu X, Fang C, Yang G, Xie Y, Nong X, Zhu J, Wang S, Peng X, Yan Q (2014) Acaricidal properties of an Ailanthus altissima bark extract against Psoroptes cuniculi and Sarcoptes scabiei var. cuniculi in vitro. Exp Appl Acarol 62(2):225–232

    Article  PubMed  Google Scholar 

  • Hasan M, Azim KF, Begum A, Khan NA, Shammi TS, Imran AS, Chowdhury IM, Urme SRA (2019) Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infect Genet Evol 70:140–157

    Article  CAS  PubMed  Google Scholar 

  • Hlina BL, Birceanu O, Robinson CS, Dhiyebi H, Wilkie MP (2021) The relationship between thermal physiology and lampricide sensitivity in larval sea lamprey (Petromyzon marinus). J Great Lakes Res 47:272-S284

    Article  Google Scholar 

  • Hu Z, Chen Z, Yin Z, Jia R, Song X, Li L, Zou Y, Liang X, Li L, He C (2015) In vitro acaricidal activity of 1, 8-cineole against Sarcoptes scabiei var. cuniculi and regulating effects on enzyme activity. Parasitol Res 114(8):2959–2967

    Article  PubMed  Google Scholar 

  • Hwang E, Park S-Y, Sun Z-w, Shin H-S, Lee D-G, Yi TH (2014) The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts. Mar Biotechnol 16(3):361–370

    Article  CAS  Google Scholar 

  • Ji Y-B, Ji C-F, Yue L (2014) Study on human promyelocytic leukemia HL-60 cells apoptosis induced by fucosterol. Bio-Med Mater Eng 24(1):845–851

    Article  CAS  Google Scholar 

  • Johansson P-O, Lindberg J, Blackman MJ, Kvarnström I, Vrang L, Hamelink E, Hallberg A, Rosenquist Å, Samuelsson B (2005) Design and synthesis of potent inhibitors of plasmepsin I and II: X-ray crystal structure of inhibitor in complex with plasmepsin II. J Med Chem 48(13):4400–4409

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Islam MN, Lee CM, Oh SH, Lee S, Jung JH, Choi JS (2013a) Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Che-Biol Interact 206(1):55–62

    Article  CAS  Google Scholar 

  • Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS (2013b) Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264. 7 macrophages. Food Chem Toxicol 59:199–206

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Jung HJ, Jeong HY, Kwon HJ, Kim M-S, Choi JS (2014) Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes. Arch Pharm Res 37(6):713–720

    Article  CAS  PubMed  Google Scholar 

  • Kabbashi AS, Garbi MI, Osman EE (2015) Antigiardial, antioxidant activities and cytotoxicity of ethanolic extract of leaves of Acacia nilotica (L). Adv Med Plant Res 3:33–38

    CAS  Google Scholar 

  • Kabbashi AS, Almagboul AZ, Garbi MI, El-badri EO, Koko WS, Hassan AM, Dahab MM, Khalil-Abuzeid NM (2016) Antigiaridial activity and cytotoxicity of ethanolic bark extract of Acacia nilotica (L.). Mediterr J bio 1(4):138–146

    Google Scholar 

  • Kamil M (2018) Wound healing effect of Acacia nilotica and Curcuma longa Mixture. MAPP 2:3–5

    Article  Google Scholar 

  • Kankara S, Sani D, Ibrahim M, Mustafa M, Go R (2017) Acacia nilotica pods’ water extract enhances wound healing in Sprague-Dawley rats by alleviating oxidative stress and suppressing pro-inflammatory cytokines. Niger J Sci Res 16(2):202–210

    Google Scholar 

  • Kim MS, Oh GH, Kim MJ, Hwang JK (2013) Fucosterol inhibits matrix metalloproteinase expression and promotes type-1 procollagen production in UVB-induced HaCaT cells. Photochem Photobiol 89(4):911–918

    Article  CAS  PubMed  Google Scholar 

  • Kim D-S, Lee H-J, Jeon Y-D, Han Y-H, Kee J-Y, Kim H-J, Shin H-J, Kang JW, Lee BS, Kim S-H (2015) Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med 43(04):731–742

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  • Lee YS, Shin KH, Kim B-K, Lee S (2004) Anti-diabetic activities of fucosterol fromPelvetia siliquosa. Arch Pharm Res 27(11):1120–1122

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Mahmud R, Noordin R, Pillai Piaru S, Perumal S, Ismail S (2013) Free radicals scavenging activity, cytotoxicity and anti-parasitic activity of essential oil of Psidium guajava L. leaves against Toxoplasma gondii. J Essent Oil-Bear Plants 16(1):32–38

    Article  CAS  Google Scholar 

  • Li M, Liu B, Bernigaud C, Fischer K, Guillot J, Fang F (2020) Lemongrass (Cymbopogon citratus) oil: a promising miticidal and ovicidal agent against Sarcoptes scabie. PLoS Negl Trop Dis 14(4):e0008225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao F, Hu Y, Tan H, Wu L, Wang Y, Huang Y, Mo Q, Wei Y (2014) Acaricidal activity of 9-oxo-10, 11-dehydroageraphorone extracted from Eupatorium adenophorum in vitro. Exp Parasitol 140:8–11

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Jones P (1995) Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 57(3):195–206

    Article  CAS  PubMed  Google Scholar 

  • López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42(1):271–276

    Article  CAS  Google Scholar 

  • Luo B, Liao F, Hu Y, Liu XI, He Y, Wu L, Tan H, Luo L, Zhou Y, Mo Q (2015) Acaricidal activity of extracts from Ligularia virgaurea against the Sarcoptes scabiei mite in vitro. Exp Ther Med 10(1):247–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado AJ, Santos ATL, Martins GM, Cruz RP, Costa MS, Campina FF, Freitas MA, Bezerra CF, Leal AL, Carneiro JNP (2018) Antiparasitic effect of the Psidium guajava L. (guava) and Psidium brownianum MART. EX DC. (araçá-de-veado) extracts. Food Chem Toxicol 119:275–280

    Article  CAS  PubMed  Google Scholar 

  • Mahmood W, Viberg LT, Fischer K, Walton SF, Holt DC (2013) An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl Trop Dis 7(11):e2525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malak N, Niaz S, Wadood A, Nasreen N, Ali I, Iqbal J, Swelum AA, Alkahtani MA, Zając Z, Khan A (2022) In silico approaches to develop herbal acaricides against R.(Boophilus) microplus and in vitro anti-tick activities of selected medicinal plants. Saudi J Biol Sci :103302

  • Melo F, Devos D, Depiereux E, Feytmans E (1997) ANOLEA: a www server to assess protein structures. Ismb 5:187–190

    CAS  PubMed  Google Scholar 

  • Mendiburu Fd (2021) agricolae: statistical procedures for agricultural research. R package version 1.3–5 edn

  • Millán J, Casáis R, Delibes-Mateos M, Calvete C, Rouco C, Castro F, Colomar V, Casas-Díaz E, Ramírez E, Moreno S (2012) Widespread exposure to Sarcoptes scabiei in wild European rabbits (Oryctolagus cuniculus) in Spain. Vet Parasitol 183(3–4):323–329

    Article  PubMed  Google Scholar 

  • Mnati SF, Habeeb MA, Mohammed MA (2021) Effect of infection with scabies on the adrenaline hormone of patients with chronic diseases in Basra City/southern Iraq. Bas J Sci 39(1):168–178

    Article  Google Scholar 

  • Molla SH, Bandyopadhyay PK (2014) In-vitro anthelmintic activity of Psidium guajava against sheep gastrointestinal nematode, Haemonchus contortus. Ecol Environ Conserv 32(2A):616–621

    Google Scholar 

  • Mounsey KE, Holt DC, McCarthy J, Currie BJ, Walton SF (2008) Scabies: molecular perspectives and therapeutic implications in the face of emerging drug resistance. Future Microbiol 3(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Mounsey KE, Holt DC, McCarthy JS, Currie BJ, Walton SF (2009) Longitudinal evidence of increasing in vitro tolerance of scabies mites to ivermectin in scabies-endemic communities. Arch Dermatol 145(7):840–841

    Article  PubMed  Google Scholar 

  • Naqvi SH, Dahot MU, Rafiq M, Khan MY, Ibrahim I, Lashari KH, Ali A, Korai AL (2011) Anti-microbial efficacy and biochemical analysis from different parts of Acacia nilotica L. and Ricinus communis L. extracts. J Med Plant Res 5(27):6299–6308

    Google Scholar 

  • Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M (2018) The phytochemistry and medicinal value of Psidium guajava (guava). Clin Phytoscience 4(1):1–8

    Article  CAS  Google Scholar 

  • Nisbet AJ, Billingsley PF (2000) A comparative survey of the hydrolytic enzymes of ectoparasitic and free-living mites. Int J Parasitol 30(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Nong X et al (2013) Clinical efficacy of botanical extracts from Eupatorium adenophorum against the Sarcoptes scabiei (Sarcoptidae: Sarcoptes) in rabbits. Vet Parasitol 195(1–2):157–164

    Article  PubMed  Google Scholar 

  • Paniagua-Pérez R et al (2017) Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr J Tradit Complement Altern Med 14(1):123–130

    Article  PubMed  CAS  Google Scholar 

  • Pasay C, Arlian L, Morgan M, Vyszenski-Moher D, Rose A, Holt D, Walton S, McCarthy J (2008) High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites. Med Vet Entomol 22(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Pasipanodya CN, Tekedza TT, Chatiza FP, Gororo E (2021) Efficacy of neem (Azadirachta indica) aqueous fruit extracts against Sarcoptes scabiei var. suis in grower pigs. Trop Anim Health Prod 53(1):1–7

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. 4.1.3 edn. R Foundation for Statistical Computing

  • Rosumeck S, Nast A, Dressler C (2018) Ivermectin and permethrin for treating scabies. Cochrane Database Syst Rev (4)

  • RStudio Team (2022) RStudio: integrated development environment for R. RStudio, PBC

  • Seddiek SA, Khater HF, El-Shorbagy MM, Ali AM (2013) The acaricidal efficacy of aqueous neem extract and ivermectin against Sarcoptes scabiei var. cuniculi in experimentally infested rabbits. Parasitol Res 112(6):2319–2330

    Article  PubMed  Google Scholar 

  • Shang X-F, Miao X-L, Dai L-X, Guo X, Li B, Pan H, Zhang J-Y (2020) The acaricidal mechanism and active compounds against Psoroptes cuniculi of the methanol extract of Adonis coerulea Maxim II: Integrated proteomics and SPR analysis. Vet Parasitol 287:109267

    Article  CAS  PubMed  Google Scholar 

  • Solanki V, Tiwari V (2018) Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 8(1):1–19

    Article  CAS  Google Scholar 

  • Tangpu TV, Yadav AK (2006) Anticestodal efficacy of Psidium guajava against experimental Hymenolepis diminuta infection in rats. Indian J Pharmacol 38(1):29

    Article  Google Scholar 

  • Terada Y, Murayama N, Ikemura H, Morita T, Nagata M (2010) Sarcoptes scabiei var. canis refractory to ivermectin treatment in two dogs. Vet Dermatol 21(6):608–612

    Article  PubMed  Google Scholar 

  • Thomas C, Coates SJ, Engelman D, Chosidow O, Chang AY (2020) Ectoparasites: scabies. JAAD 82(3):533–548

    Article  PubMed  Google Scholar 

  • Traore A, Ouedraogo S, Lompo M, Traore S, Some N, Guissou IP (2013) Ethnobotanical survey of medicinal plants used to treat gastrointestinal parasites in human and livestock in four geographic areas of Burkina Faso (West Africa). Arch Appl Sci Res 5(6):172–177

    Google Scholar 

  • Vasudev A, Kaur J, Punj I, Gill PK, Sohal SK (2015) Evaluation of methanol and acetone bark extracts from Acacia nilotica (Linn.) as a source of growth inhibitors against Bactrocera cucurbitae (Diptera: Coquillett). J Entomol Zool Stud

  • Voyvoda H, Ulutas B, Eren H, Karagenc T, Bayramli G (2005) Use of doramectin for treatment of sarcoptic mange in five Angora rabbits. Vet Dermatol 16(4):285–288

    Article  PubMed  Google Scholar 

  • Walton S, Myerscough M, Currie B (2000) Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var. hominis. Trans R Soc Trop Med Hyg 94(1):92–96

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, pp 189–201

  • Yadav A, Honamane P, Rajput M, Dange V, Salunkhe K, Kane S, Mohite S (2020) Antimalarial activity of Psidium guajava leaf extracts. Int J Sci Res Chem 5(6):63–68

    Google Scholar 

  • Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci 117(3):1496–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabré G, Kaboré A, Bayala B, Katiki LM, Costa-Júnior LM, Tamboura HH, Belem AM, Abdalla AL, Niderkorn V, Hoste H (2017) Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana. Parasite 24

  • Zubair M, Azeem M, Mumtaz R, Younas M, Adrees M, Zubair E, Khalid A, Hafeez F, Rizwan M, Ali S (2022) Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. Environ Pollut 304:119249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Prof. Vett LlOyd of Mount Allison University, Canada, who helped us in proofreading this manuscript for language usage and English grammar setting. All authors declared that all provided support and assistance has been acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.K., M.S., and A.K. designed and conceptualized the study. A.K. N.M. and S.N. conducted the experiments and wrote the manuscript. A.K. and M.B.S. performed statistical analysis. M.B.S., N.K., and S.N. prepared the figures and tables. N.M. and A.K performed the in silico analysis. A.A., L.A., and M.B.S. improved the figures and helped in M.D. simulation. A.A., A.K., J.F., and M.B.S. edited and finalized the manuscript.

Corresponding author

Correspondence to Adil Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

The study was approved under approval no. AWKUM-18F-74879 by the Ethical Committee of Chemical and Life Section, Department of Zoology, Abdul Wali Khan University Mardan, Pakistan.

Consent to participate

All authors provide consent for participation of this manuscript in the review process.

Consent for publication

All authors agree to the publication of this manuscript.

Additional information

Section Editor: Van Lun Low

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Sohaib, M., Ullah, R. et al. Structure-based in silico design and in vitro acaricidal activity assessment of Acacia nilotica and Psidium guajava extracts against Sarcoptes scabiei var. cuniculi. Parasitol Res 121, 2901–2915 (2022). https://doi.org/10.1007/s00436-022-07615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07615-3

Keywords

Navigation