Skip to main content

Advertisement

Log in

Influence of extraordinary floods on wildlife parasites: the case of gastrointestinal helminths and protozoa of wild canids from the Iberá Ecoregion, Argentina

  • Helminthology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Parasites are natural components of ecosystems and play a significant role in the dynamics of wild animal populations. Although the environment of parasites is primarily defined by the host, most life cycles involve stages that must endure external conditions. Rainfall and flooding events are important factors that might influence the transport of parasitic stages, altering soil moisture levels, and resulting in a favorable environment for parasite survival and development. We assessed whether an extraordinary flood event modified the occurrence of gastrointestinal parasites (nematodes and protozoa) in wild canids in two protected areas in northern Argentina. From 2016 to 2018, we collected fecal samples of two fox species, Lycalopex gymnocercus and Cerdocyon thous, and examined the presence of nematodes and protozoa. We assessed changes in the occurrence of these parasites after a flood event, while adjusting for potential confounders (i.e., monthly average temperature, season, host species, site). In a second stage of the analysis, we evaluated whether part of the effect was caused by changes in soil moisture, by adding normalized difference water index as an independent variable. We found that the presence of nematodes in foxes was higher after flooding than before flooding, and this association was not explained by changes in the soil moisture. On the other hand, the flood event was not relevant for protozoa. Stronger and long-lasting flood events are expected due to the effect of global warming on El Niño events, and this may increase and intensify the spread of some parasites affecting wildlife, which could also be of public health concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acha PN, Boris S (2003) Volumen III Parasitosis. In: Organización Panamericana de la Salud Zoonosis y enfermedades transmisibles comunes al hombre y a los animales, 3rd edn. Washington, D.C

  • Afonso E, Germain E, Poulle ML et al (2013) Environmental determinants of spatial and temporal variations in the transmission of Toxoplasma gondii in its definitive hosts. Int J Parasitol Parasites Wildl 2:278–285. https://doi.org/10.1016/j.ijppaw.2013.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Beldomenico PM, Begon M (2015) Stress-host-parasite interactions: a vicious triangle? FAVE Sección Ciencias Vet 14:6–19. https://doi.org/10.14409/FAVECV.V14I1/2.5160

  • Bezirtzoglou C, Dekas K, Charvalos E (2011) Climate changes, environment and infection : facts, scenarios and growing awareness from the public health community within Europe. Anaerobe 17:337–340. https://doi.org/10.1016/j.anaerobe.2011.05.016

    Article  PubMed  Google Scholar 

  • Bolker B, Brooks M, Clark C et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:120–135. https://doi.org/10.1016/J.TREE.2008.10.008

    Article  Google Scholar 

  • Brown L, Murray V (2013) Examining the relationship between infectious diseases and flooding in Europe a systematic literature review and summary of possible public health interventions. Disaster Heal 1:117–127. https://doi.org/10.4161/dish.25216

    Article  Google Scholar 

  • Cabrera A (1976) Regiones fitogeográficas argentinas. In: Enciclopedia Argentina de Agricultura y Ganadería II. , 1. Ed. Acme, Segund…. Bs, As, Argentina

  • Cai W, Wang G, Dewitte B et al (2018) Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564:201–206. https://doi.org/10.1038/s41586-018-0776-9

    Article  CAS  PubMed  Google Scholar 

  • Cai W, McPhaden MJ, Grimm AM et al (2020) Climate impacts of the El Niño-Southern Oscillation on South America. Nat Rev Earth Environ 1:215–231. https://doi.org/10.1038/s43017-020-0040-3

    Article  Google Scholar 

  • Cazón A, Sühring S (1999) A technique for extraction and thin layer chromatography visualization of fecal bile acids applied to neotropical felid scats. Rev Biol Trop 47:245–249

    Google Scholar 

  • Cazón A, Juarez V, Monjeau JA, Lilienfeld M (2009) Discriminación de heces de puma (Puma concolor) y jaguar (Panthera onca) por identificación de sus ácidos biliares: una técnica para el monitoreo de carnívoros silvestres. Mastozool Neotrop 16:449–453

    Google Scholar 

  • Chame M (2003) Terrestrial mammal feces: a morphometric summary and description. Mem Inst Oswaldo Cruz 98:71–94. https://doi.org/10.1590/S0074-02762003000900014

    Article  PubMed  Google Scholar 

  • Contreras F, Ferrelli F, Piccolo M (2020) Impactos de eventos secos y lluviosos sobre cuerpos de agua periurbanos subtropicales: aporte al ordenamiento del espacio urbano de Corrientes (Argentina). Finisterra 55:3–22. https://doi.org/10.18055/Finis19436

  • Costa Santos JL, Borges Magalhães N, dos Santos HA et al (2012) Parasites of domestic and wild canids in the region of Serra do Cipó National Park, Brazil. Rev Bras Parasitol Vet 2961:270–277

    Article  Google Scholar 

  • Dąbrowska J, Karamon J, Kochanowski M et al (2019) Tritrichomonas foetus as a causative agent of tritrichomonosis in different animal hosts. J Vet Res 63:533. https://doi.org/10.2478/JVETRES-2019-0072

    Article  PubMed  PubMed Central  Google Scholar 

  • Delahay RJ, Smith GC, Hutchings MR (2009) The science of wildlife disease management. In: Delahay RJ, Smith GC, Hutchings MR (eds) Management of disease in wild mammals. Springer, Tokio, pp 1–8

    Chapter  Google Scholar 

  • Farias AA, Kittlein MJ (2008) Small-scale spatial variability in the diet of pampas foxes (Pseudalopex gymnocercus) and human-induced changes in prey base. Ecol Res 23:543–550

    Article  Google Scholar 

  • Fasullo JT, Otto-Bliesner BL, Stevenson S (2018) ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys Res Lett 45:9216–9225. https://doi.org/10.1029/2018GL079022

    Article  Google Scholar 

  • Foreyt WJ (2001) Diagnostic parasitology. Veterinary parasitology reference manual, 5th edn. Black-Well Publishing Professional, Iowa, pp 5–6

    Google Scholar 

  • Froeschke G, Harf R, Sommer S, Matthee S (2010) Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa - implications for possible shifts in infestation patterns due to global changes. Oikos 119:1029–1039. https://doi.org/10.1111/j.1600-0706.2009.18124.x

    Article  Google Scholar 

  • Gamboa MI (2005) Effects of temperature and humidity on the development of eggs of Toxocara canis under laboratory conditions. J Helminthol 79:327–331. https://doi.org/10.1079/JOH2005287

    Article  CAS  PubMed  Google Scholar 

  • Gao B (1996) NDWI a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  • Han KT, Wai KT, Aye KH et al (2019) Emerging neglected helminthiasis and determinants of multiple helminth infections in flood-prone township in Myanmar. Trop Med Health 47:1–10. https://doi.org/10.1186/s41182-018-0133-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Isla FI (2018) Manuscript under review for journal Hydrol . Earth Syst . Sci . Discussion started : 3 April 2018 ENSO-triggered floods in South America : correlation between maximum monthly discharges during strong events Manuscript under review for journal Hydrol . Ear. Hydrol Earth Syst Sci Discuss 1–13

  • Jackson TJ, Chen D, Cosh M et al (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–482. https://doi.org/10.1016/j.rse.2003.10.021

    Article  Google Scholar 

  • Johnson NC (2014) A boost in big El Niño. Nat Publ Gr 4:90–91. https://doi.org/10.1038/nclimate2108

    Article  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5:1–38. https://doi.org/10.2166/WH.2006.002

    Article  PubMed  Google Scholar 

  • Kołodziej-Sobocińska M (2019) Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mamm Res 64:301–318. https://doi.org/10.1007/s13364-019-00423-8

    Article  Google Scholar 

  • Lilley B, Lammie P, Dickerson JEM (1997) An increase in hookworm infection temporally associated with ecologic change. Emerg Infect Dis 3:391–393

    Article  CAS  Google Scholar 

  • Lindsay DS, Dubey JP (1997) Biology of Isospora spp . from humans , nonhuman primates , and domestic animals. 10:19–34

  • Lucherini M, Pessino M, Farias AA (2004) Pampas fox Pseudalopex gymnocercus (G. Fischer, 1814) Least concern. In: Sillero-zubiri C, Hoffmann M, Macdonald DW (eds) Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan, pp 63–68. Switzerland and Cambridge

  • Lucius R, Poulin R (2017) General aspects of parasite biology. In: Lucius R, Loos-Frank B, Lane RP, Poulin R, Roberts C, Grencis RK (eds) The Biology of Parasites. Wiley-VCH, pp 1–93

    Google Scholar 

  • Maestri M, Castets F, Bayala M, Canziani G (2019) Análisis comparativo de cinco métodos de procesamiento para calcular el área de lagunas pampeanas a partir de imágenes satelitales Landsat. Biol Acuática 33:003. https://doi.org/10.24215/16684869e003

  • Mas-Coma S, Valero MA, Bargues MD (2008) Effects of climate change on animal and zoonotic helminthiases. OIE Rev Sci Tech 27:443–457. https://doi.org/10.20506/rst.27.2.1822

  • Mateucci S (2012) Ecorregión Esteros del Iberá. In: Morello J, Matteucci SD, Rodriguez AF, Silva ME (eds) Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica, Buenos Aires, p 752

    Google Scholar 

  • Moleón MS, Kinsella JM, Moreno PG, et al. (2015) New hosts and localities for helminths of carnivores in Argentina. Zootaxa 4057:106–114. https://doi.org/10.11646/zootaxa.4057.1.6

  • Neiff JJ, Poi de Neiff ASJ (2005) SITUACIÓN AMBIENTAL EN LA ECORREGIÓN IBERÁ. La Situación Ambiental Argentina 2005:177–194

    Google Scholar 

  • Okaka FO, Odhiambo BDO (2018) Relationship between flooding and out break of infectious diseasesin Kenya: a review of the literature. J Environ Public Health 2018. https://doi.org/10.1155/2018/5452938

  • Orozco MM, Berra Y, Argibay DH, Guillemi EC, Farber M, Minatel L, Marcos A, Perez Carrera A, Pereira JDO (2017) El Proceso de inundación de la Cuenca del Rio Paraná: Implicancias en la salud de las poblaciones de ciervo de los pantanos. In: 10° Jornadas Internacionales de Veterinaria Práctica

  • Otranto D, Deplazes P (2018) Zoonotic nematodes of wild carnivores. Int J Parasitol Parasites Wildl 0–1. https://doi.org/10.1016/j.ijppaw.2018.12.011

  • Revilla Sanz M (2019) Estimación de la superficie inundada y análisis de la eutrofización en el parque nacional de las tablas de daimiel mediante imágenes de satélite y sig

  • Ribas A, Jollivet C, Morand S et al (2017) Intestinal parasitic infections and environmental water contamination in a rural village of northern Lao PDR. Korean J Parasitol 55:523–532. https://doi.org/10.3347/kjp.2017.55.5.523

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivero MR, Feliziani C, De Angelo C et al (2020) Giardia spp., the most ubiquitous protozoan parasite in Argentina: human, animal and environmental surveys reported in the last 40 years. Parasitol Res 119:3181–3201. https://doi.org/10.1007/s00436-020-06853-7

    Article  PubMed  Google Scholar 

  • Ruas JL, Gertrud M, Farias N, a R, et al (2008) Helmintos do cachorro do campo, pseudalopex gymnocercus (Fischer, 1814) E DO Cachorro do mato, Cerdocyon thous (Linnaeus, 1766) no sul do estado do rio grande do sul, Brasil. Rev Bras Parasitol Vet 17:87–92. https://doi.org/10.1590/S1984-29612008000200005

    Article  PubMed  Google Scholar 

  • Saibene CS, Montanelli S (1977) Mapeo de las comunidades vegetales leñosas del Parque Nacional Mburucuyá, Corrientes, Argentina. Facena 13:49–57

    Google Scholar 

  • Salame-Méndez A, Andrade-Herrera M, Zamora-Torres I, Serrano H, Soto-Mendoza S, Castro-Campillo A, Ramírez-Pulido J, Haro-Castellanos J (2012) Método optiMizado para evaluar ácidos biliares de Muestras fecales secas o preservadas en etanol coMo herraMienta para identificar carnívoros silvestres. Acta Zool Mex 28:305–320

    Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/J.2041-210X.2010.00012.X

    Article  Google Scholar 

  • SelstadUtaaker K, Robertson LJ (2015) Climate change and foodborne transmission of parasites: a consideration of possible interactions and impacts for selected parasites. Food Res Int 68:16–23. https://doi.org/10.1016/j.foodres.2014.06.051

    Article  Google Scholar 

  • Serrano J, da Shahidian SM, SJ, (2019) Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean. Water 11:1–20. https://doi.org/10.3390/w11010062

    Article  Google Scholar 

  • Sillero - Zubiri C, Hoffmann M, Macdonald DW (2004) Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. IUCN/SSC Canid Specialist Group, Switzerland and Cambridge

  • Shokri A, Sabzevari S, Hashemi SA (2020) Impacts of flood on health of Iranian population: infectious diseases with an emphasis on parasitic infections. Parasite Epidemiol Control 9:e00144. https://doi.org/10.1016/j.parepi.2020.e00144

    Article  PubMed  PubMed Central  Google Scholar 

  • SMN (2017) INFORME DE LAS PRECIPITACIONES OCURRIDAS EN ABRIL 2017. Buenos Aires, Argentina

  • Soulsby EJL (1982) Helminths. Helminths, arthropods and protozoa of domesticated animals. Bailliere Tindall, London, pp 199–200

    Google Scholar 

  • Usman B (2013) Satellite imagery land cover classification using k-means clustering algorithm computer vision for environmental information extraction. Babawuro Usman/ Elixir Comp Sci Engg 63:18671–18675

    Google Scholar 

  • Vignau ML, Venturini LM, Romero JR et al (2005) Parasitología práctica y modelos de enfermedades parasitarias en los animales domésticos

  • Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033. https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  • Yan C, Liang L, Zheng K, Zhu X (2016) Impact of environmental factors on the emergence, transmission and distribution of Toxoplasma gondii. Parasit Vectors 9:1–7. https://doi.org/10.1186/s13071-016-1432-6

    Article  CAS  Google Scholar 

  • Zajac, Conboy (2012) Veterinary clinical parasitology

Download references

Acknowledgements

We are grateful to our field assistants and collaborators for their invaluable help in preparing and executing the field and laboratory research = F. Sanchez Gavier, C. Holzer, R. Arguello, S. Schmidth, P. Carou, F. Molina, J. Garnica, D. Armua, C. Ruiz, M. Lezcano, J. Cabrera, B. Del Cueto, N. Zimerman, S. Bocca, M. Galarza, A. Enciso, G. Espinosa, M. Mazzanti, D. Pucheta, A. Godoy, D. Giles. We would also like to thank the park rangers of San Nicolás and Mburucuyá and to the Direction of Natural Resources of Corrientes and the National Park Administration (APN) for permission to conduct this investigation and logistical support. We appreciate the comments of Ignacio Contreras on an early draft of this paper.

Funding

Funding was provided by the National Scientific and Technical Research Council (CONICET), the Rufford Foundation (Rufford Small Grants), and the Neotropical Grassland Conservancy (Student Grant Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Natalini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Abdul Jabbar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natalini, M.B., Cuervo, P.F., Gennuso, M.S. et al. Influence of extraordinary floods on wildlife parasites: the case of gastrointestinal helminths and protozoa of wild canids from the Iberá Ecoregion, Argentina. Parasitol Res 120, 3827–3835 (2021). https://doi.org/10.1007/s00436-021-07330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07330-5

Keywords

Navigation