Skip to main content

Advertisement

Log in

In vitro evaluation and in vivo efficacy of nitroimidazole-sulfanyl ethyl derivatives against Leishmania (V.) braziliensis and Leishmania (L.) mexicana

  • Treatment and Prophylaxis - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The aim of this study was to synthesize several small molecules of the type 5-nitroimidazole-sulfanyl and evaluate biological properties against the main Leishmania species that cause cutaneous leishmaniasis in Venezuela. Final compounds 47 were generated through simple nucleophilic substitution of 1-(2-chloroethyl)-2-methyl-5-nitroimidazole 3 with 2-mercaptoethanol, 1-methyl-2-mercaptoethanol, and 2-thyolacetic acid derivative. Compound 8 was synthesized via a coupling reaction between 7 and (S)-Methyl 2-amino-4-methylpentanoate hydrochloride. The inhibitory concentrations of (3, 4, 7, 8) against Leishmania (L.) mexicana and (V.) braziliensis in promastigotes and experimentally infected macrophages were determined by in vitro activity assays. Compounds 7 and 8 shown high activity against both species of Leishmania and were selected for the in vivo evaluation. Animals were infected with promastigotes of the two species and divided into four groups of ten (10) animals and a control group. Intralesional injection way was used for the treatment. The parasitological diagnostic after treatment was obtained by PCR using species specific oligonucleotides. The two Leishmania species were susceptible to compounds 7 and 8 in vivo assays. The results indicated that both compounds reduce significantly (96%) the size of the lesion and cure 63% of the mice infected with L (L) mexicana or L (V) braziliensis as was determined by PCR. The results are indicating that both compounds may represent an alternative treatment for these two Leishmania species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal V, Singh Z (2006) Miltefosine: first oral drug for treatment of visceral leishmaniasis. Med J Armed Forces India 62:66–67

    Article  CAS  Google Scholar 

  • Al-Abdely H, Graybill J, Loebenberg D, Melby P (1999) Efficacy of the triazole SCH 56592 against Leishmania amazonensis and Leishmania donovani in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 43:2910–2914

    Article  CAS  Google Scholar 

  • Andrews K, Fisher G, Skinner-Adams T (2014) Drug repurposing and human parasitic protozoan diseases. Int J Pasitol Drugs Drug Res 4:95–111

    Article  Google Scholar 

  • Ang C, Jarrad A, Cooper M, Blaskovich M (2017) Nitroimidazoles: molecular fireworks that combat a broad spectrum of infectious diseases. J Med Chem 60:7636–7657

    Article  CAS  Google Scholar 

  • Baquedano Y, Moreno E, Espuelas S, Nguewa P, Font M, Gutierrez K, Jiménez-Ruiz A, Palop J, Sanmartín C (2014) Novel hybrid selenosulfonamides as potent antileishmanial agents. Eur J Med Chem 74:116–123

    Article  CAS  Google Scholar 

  • Brito S, Crescente O, Fernández A, Coronado A, Rodríguez N (2006) Eficacia de un ácido kaurénico extraído de la planta venezolana Wedelia trilobata (Asterácea) contra Leishmania (V) braziliensis. Biomedica 26:180–187

    Article  Google Scholar 

  • Burrows J, Elliott R, Kaneko T, Mowbrayd C, Watersona D (2014) The role of modern drug discovery in the fight against neglected and tropical diseases. MedChemComm 5:688–700

    Article  CAS  Google Scholar 

  • Chang K, McGwire B (2002) Molecular determinants and regulation of Leishmania virulence. Kinetoplastid Biol Dis 1:1

    Article  Google Scholar 

  • Colmenares C, Rodríguez M, Acosta M, Charris J (2020) Synthesis and antimalarial activity of (S)-methyl-(7-chloroquinolin-4-ylthio) acetamidoalquilate derivatives. J Chem Res 44:161–166

    Article  Google Scholar 

  • Drugs for Neglected Diseases initiative (https://dndi.org/press-releases/2021/ghit-fund-renews-support-dndi-drug-discovery-early-stage-development-leishmaniasis-chagas-disease/). Successful screening collaboration leads to a new lead optimization project. Accessed 17–05–2021

  • Dietze R, Carvalho S, Valli L, Berman J, Brewer T, Milhous W, Sanchez J, Schuster B, Grogl M (2001) Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 65:685–689

    Article  CAS  Google Scholar 

  • Gómez-Pérez V, Manzano J, García-Hernández R, Castanys S, Gamarro F, Campos J (2015) Design, synthesis and anti-leishmanial activity of novel symmetrical bispyridinium cyclophanes. Eur J Med Chem 89:362–369

    Article  Google Scholar 

  • Huber W, Koella J (1993) A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 55:257–261

    Article  CAS  Google Scholar 

  • Loiseau P, Cojean S, Schrével J (2011) Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite 18:115–119

    Article  CAS  Google Scholar 

  • Macherey A, Dansette P (2015) Biotransformations leading to toxic metabolites: chemical aspect The Practice of Medicinal Chemistry. Academic Press, New York, pp 675–696

    Google Scholar 

  • Monge-Maillo B, López-Vélez R (2015) Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis 60:1398–1404

    PubMed  Google Scholar 

  • Nepali K, Lee H-Y, Liou J-P (2019) Nitro-Group-Containing Drugs. J Med Chem 62:2851–2893

    Article  CAS  Google Scholar 

  • Otero E, García E, Palacios G, Yepes L, Carda M, Agut R, Vélez I, Cardona W, Robledo S (2017) Triclosan-caffeic acid hybrids: synthesis, leishmanicidal, trypanocidal and cytotoxic activities. Eur J Med Chem 141:73–83

    Article  CAS  Google Scholar 

  • Patterson S, Wyllie S, Norval S, Stojanovski L, Simeons F, Auer J, Osuna-Cabello M, Read K, Fairlamb A (2016) The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis. eLife 5:e09744

    Article  Google Scholar 

  • Rodrigues J, Charris J, Ferrer R, Gamboa N, Ángel J, Nitzche B, Hoepfner M, Lein M, Jung K, Abamjuk C (2012) Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo. Invest New Drugs 30:1426–1433

    Article  CAS  Google Scholar 

  • Rodríguez N, De Lima H, Aguilar CM, Rodríguez A, Barker DC, Convit J (2002) Molecular epidemiology of cutaneous leishmaniasis in Venezuela. Trans R Soc Trop Med Hyg 96:105–109

    Article  Google Scholar 

  • Rodríguez M, Gutiérrez J, Domínguez J, Peixoto P, Fernández A, Rodríguez N, Deffieux D, Rojas L, Quideau S, Pouységu L, Charris J (2020) Synthesis and leishmanicidal evaluation of sulfanyl- andsulfonyl-tethered functionalized benzoate derivatives featuring a nitroimidazole moiety. Arch Pharm Chem Life Sci 353:e2000002

    Article  Google Scholar 

  • Romero A, Rodríguez N, Oviedo H (2019) Optimization of phthalazin-based aryl/heteroarylhydrazones to design new promising antileishmanicidal agents: synthesis and biological evaluation of 3-aryl-6-piperazin-1,2,4-triazolo[3,4-a]phthalazines. Bioorg Chem 83:145–153

    Article  CAS  Google Scholar 

  • Salahuddin A, Agarwal S, Avecilla F, Azam A (2012) Metronidazole thiosalicylate conjugates: synthesis, crystal structure, docking studies and antiamoebic activity. Bioorg Med Chem Let 22:5694–5699

    Article  CAS  Google Scholar 

  • Sangshetti J, Kalam F, Kulkarni A, Rohidas A, Patilc R (2015) Antileishmanial drug discovery: comprehensive review of the last 10 years. RSC Adv 5:32376–32415

    Article  CAS  Google Scholar 

  • Seeberger J, Daoud S, Pammer J (2003) Transient effect of topical treatment of cutaneous leishmaniasis with imiquimod. Int J Dermatol 42:576–579

    Article  CAS  Google Scholar 

  • Singh S, Jain A, Kaur S, Singh R, Kumar P, Garg S, Sharma S, Arora S (2010) Synthesis and antileishmanial activity of piperoyl-amino acid conjugates. Eur J Med Chem 45:3439–3445

    Article  CAS  Google Scholar 

  • Singh K, Garg G, Ali V (2016) Current therapeutics, their problems and thiol metabolism as potential drug targets in Leishmaniasis. Curr Drug Metab 17:897–919

    Article  CAS  Google Scholar 

  • Somaratne V, Ranawaka R, Jayaruwan H, Wipuladasa D, de Silva S (2019) Randomized, double-blind study on intralesional metronidazole versus intralesional sodium stibogluconate in Leishmania donovani cutaneous leishmaniasis. J Dermatol Treat 30:87–91

    Article  CAS  Google Scholar 

  • Soto J, Toledo J, Gutierrez P, Nicholls R, Padilla J, Engel J, Fischer C, Voss A, Berman J (2001) Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clin Infect Dis 33:E57–E61

    Article  CAS  Google Scholar 

  • Stefanello T, Panice M, Ueda-Nakamura T, Sarragiotto M, Auzély-Velty R, Nakamura C (2014) N-butyl-[1-(4-methoxy)phenyl-9H-β-carboline]-3-carboxamide prevents cytokinesis in Leishmania amazonensis. Antimicrob Agents Chemother 58:7112–7120

    Article  CAS  Google Scholar 

  • Texaira E, Rabello A, Aguiar M (2019) In vitro activity and in vivo efficacy of fexinidazole against new world Leishmania species. J Antimicrob Chemother 74:2318–2325

    Article  Google Scholar 

  • Thompson A, O’Connor P, Blaser A, Yardley V, Maes L, Gupta S, Launay D, Martin D, Franzblau S, Wan B, Wang Y, Ma Z, Denny W (2016) Repositioning antitubercular 6-nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles for neglected tropical diseases: structure−activity studies on a preclinical candidate for visceral leishmaniasis. J Med Chem 59:2530–2550

    Article  CAS  Google Scholar 

  • Tiwari A, Kumar S, Shivahare R, Kant P, Gupta S, Suryawanshi S (2015) Chemotherapy of leishmaniasis part XIII: design and synthesis of novel heteroretinoid-bisbenzylidine ketone hybrids as antileishmanial agents. Bioorg Med Chem Lett 25:410–413

    Article  CAS  Google Scholar 

  • Upadhyay A, Chandrakar P, Gupta S, Parmar N, Kumar Singh S, Rashid M, Kushwaha P, Wahajuddin M, Sashidhara K, Kar S (2019) Synthesis, biological evaluation, structure-activity relationship, and mechanism of action studies of quinoline−metronidazole derivatives against experimental visceral leishmaniasis. J Med Chem 62:5655–5671

    Article  CAS  Google Scholar 

  • World Health Organization. Leishmaniases: epidemiological report of the Americas N° 7 – March 2019. WHO/PAHO Department of Neglected Infectious Diseases https://www.who.int/leishmaniasis/resources/who_paho_era7/en/. Accessed 02–07–2020

  • Wyllie S, Patterson S, Stojanovski L, Simeons F, Norval S, Kime R, Read K, Fairlamb A (2012) The antitrypanosome drug fexinidazole shows potential for treating visceral leishmaniasis. Sci Transl Med 4:119re1

    Article  Google Scholar 

  • Wyllie S, Roberts A, Norval S, Patterson S, Foth B, Berriman M, Read K, Fairlamb A (2016) Activation of bicyclic nitro-drugs by a novel nitroreductase (ntr2) in leishmania. PLoS Pathog 12:e1005971

    Article  Google Scholar 

  • Zhai L, Chen M, Blom J, Theander T, Christensen S, Kharazmi A (1999) The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 43:793–803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Instituto de Investigaciones Farmacéuticas (IIF) and Consejo de Desarrollo Científico y Humanístico de la Universidad Central de Venezuela (CDCH-UCV, PG. 09-8819-2013/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime E. Charris.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Sarah Hendrickx.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3220 KB)

436_2021_7266_MOESM2_ESM.docx

Supplementary file2 Supplementary data of NMR spectra (1H and 13C NMR) for all compounds described and some Tables are available. (DOCX 40.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, Z., Mijares, M.R., Ramírez, H. et al. In vitro evaluation and in vivo efficacy of nitroimidazole-sulfanyl ethyl derivatives against Leishmania (V.) braziliensis and Leishmania (L.) mexicana. Parasitol Res 120, 3307–3317 (2021). https://doi.org/10.1007/s00436-021-07266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07266-w

Keyword

Navigation