Abdel-Nour M, Duncan C, Low DE, Guyard C (2013) Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 14:21660–21675. https://doi.org/10.3390/ijms141121660
CAS
Article
PubMed
PubMed Central
Google Scholar
Amissah NA, Gryseels S, Tobias NJ, Ravadgar B, Suzuki M, Vandelannoote K, Durnez L, Leirs H, Stinear TP, Portaels F, Ablordey A, Eddyani M (2014) Investigating the role of free-living amoebae as a reservoir for Mycobacterium ulcerans. PLoS Negl Trop Dis 8:e3148. https://doi.org/10.1371/journal.pntd.0003148
Article
PubMed
PubMed Central
Google Scholar
Arsenault P, Tayebi A (2016) Eye safety in dentistry and associated liability. J Mass Dent Soc 64:12–16
PubMed
Google Scholar
Arshad M, Carnt N, Tan J, Ekkeshis I, Stapleton F (2019) Water exposure and the risk of contact lens-related disease. Cornea 38:791–797. https://doi.org/10.1097/ICO.0000000000001898
Article
PubMed
Google Scholar
Ashbolt NJ (2015) Environmental (saprozoic) pathogens of engineered water systems: understanding their ecology for risk assessment and management. Pathogens 4:390–405. https://doi.org/10.3390/pathogens4020390
Article
Google Scholar
Aybar M, Perez-Calleja P, Li M, Pavissich JP, Nerenberg R (2019) Predation creates unique void layer in membrane-aerated biofilms. Water Res 149:232–242. https://doi.org/10.1016/j.watres.2018.10.084
CAS
Article
PubMed
Google Scholar
Barbeau J, Buhler T (2001) Biofilms augment the number of free-living amoebae in dental unit waterlines. Res Microbiol 152:753–760. https://doi.org/10.1016/s0923-2508(01)01256-6
CAS
Article
PubMed
Google Scholar
Barbot V, Robert A, Rodier MH, Imbert C (2012) Update on infectious risks associated with dental unit waterlines. FEMS Immunol Med Microbiol 65:196–204. https://doi.org/10.1111/j.1574-695X.2012.00971.x
CAS
Article
PubMed
Google Scholar
Bastian F, Alabouvette C, Saiz-Jimenez C (2009) Bacteria and free-living amoeba in the Lascaux Cave. Res Microbiol 160:38–40. https://doi.org/10.1016/j.resmic.2008.10.001
CAS
Article
PubMed
Google Scholar
Beattie TK, Tomlinson A, McFadyen AK (2006) Attachment of Acanthamoeba to first- and second-generation silicone hydrogel contact lenses. Ophthalmology 113:117–125. https://doi.org/10.1016/j.ophtha.2005.10.018
Article
PubMed
Google Scholar
Beattie TK, Tomlinson A, McFadyen AK, Seal DV, Grimason AM (2003) Enhanced attachment of Acanthamoeba to extended-wear silicone hydrogel contact lenses: a new risk factor for infection? Ophthalmology 110:765–771. https://doi.org/10.1016/S0161-6420(02)01971-1
Article
PubMed
Google Scholar
Beattie TK, Tomlinson A, Seal DV, McFadyen AK (2011) Salicylate inhibition of acanthamoebal attachment to contact lenses. Optom vis Sci 88:1422–1432. https://doi.org/10.1097/OPX.0b013e318230f574
Article
PubMed
Google Scholar
Bischoff PJ, Wetmore S (2009) Seasonal abundances of naked amoebae in biofilms on shells of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J Eukaryot Microbiol 56:397–399. https://doi.org/10.1111/j.1550-7408.2009.00415.x
Article
PubMed
Google Scholar
Bonadonna L, Lacchetti I, Paradiso R (2006) Free-living amoebae: analytical methods for water and biofilm quality control. Ann Ig 18:199–206
CAS
PubMed
Google Scholar
Boost M, Shi GS, Cho P (2011) Adherence of Acanthamoeba to lens cases and effects of drying on survival. Optom vis Sci 88:703–707. https://doi.org/10.1097/opx.0b013e318215c316
Article
PubMed
Google Scholar
Brouse L, Brouse R, Brouse D (2017) Natural pathogen control chemistry to replace toxic treatment of microbes and biofilm in cooling towers. Pathogens 6:14. https://doi.org/10.3390/pathogens6020014
CAS
Article
PubMed Central
Google Scholar
Brown MR, Barker J (1999) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7:46–50. https://doi.org/10.1016/s0966-842x(98)01425-5
CAS
Article
PubMed
Google Scholar
Buse HY, Lu J, Lu X, Mou X, Ashbolt NJ (2014a) Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS Microbiol Ecol 88:280–295. https://doi.org/10.1111/1574-6941.12294
CAS
Article
PubMed
Google Scholar
Buse HY, Lu J, Struewing IT, Ashbolt NJ (2014b) Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. Int J Hyg Environ Health 217:219–225. https://doi.org/10.1016/j.ijheh.2013.04.005
CAS
Article
PubMed
Google Scholar
Carlesso AM, Artuso GL, Caumo K, Rott MB (2010) Potentially pathogenic Acanthamoeba isolated from a hospital in Brazil. Curr Microbiol 60:185–190. https://doi.org/10.1007/s00284-009-9523-7
CAS
Article
PubMed
Google Scholar
Carlesso AM, Simonetti AB, Artuso GL, Rott MB (2007) Isolation and identification of potentially pathogenic free-living amoebae in samples from environments in a public hospital in the city of Porto Alegre, Rio Grande do Sul. Rev Soc Bras Med Trop 40:316–320. https://doi.org/10.1590/s0037-86822007000300013
Article
PubMed
Google Scholar
Castrillon JC, Orozco LP (2013) Acanthamoeba spp. as opportunistic pathogens parasites. Rev Chilena Infectol 30:147–155. https://doi.org/10.4067/S0716-10182013000200005
Article
PubMed
Google Scholar
CDC (2012) Parasites - Acanthamoeba - Granulomatous Amebic Encephalitis (GAE); Keratitis. Sources of infection & risk factors in CDC. https://www.cdc.gov/parasites/acanthamoeba/infection-sources.html. Accessed 23 Nov 2020
Chang CW, Wu YC (2010) Evaluation of DNA extraction methods and dilution treatment for detection and quantification of Acanthamoeba in water and biofilm by real-time PCR. Water Sci Technol 62:2141–2149. https://doi.org/10.2166/wst.2010.405
CAS
Article
PubMed
Google Scholar
Chang CW, Wu YC, Ming KW (2010) Evaluation of real-time PCR methods for quantification of Acanthamoeba in anthropogenic water and biofilms. J Appl Microbiol 109:799–807. https://doi.org/10.1111/j.1365-2672.2010.04708.x
CAS
Article
PubMed
Google Scholar
Cho P, Boost MV (2019) Evaluation of prevention and disruption of biofilm in contact lens cases. Ophthalmic Physiol Opt 39:337–349. https://doi.org/10.1111/opo.12635
Article
PubMed
Google Scholar
Crutsinger GM (2012) Bacterial biofilms in a “genes-to-ecosystems” context. Mol Ecol 21:1545–1547. https://doi.org/10.1111/j.1365-294X.2012.05504.x
Article
PubMed
Google Scholar
Darbyshire JF (2005) The use of soil biofilms for observing protozoan movement and feeding. FEMS Microbiol Lett 244:329–333. https://doi.org/10.1016/j.femsle.2005.02.001
CAS
Article
PubMed
Google Scholar
Dart JK, Saw VP, Kilvington S (2009) Acanthamoeba keratitis: diagnosis and treatment update 2009. Am J Ophthalmol 148:487-499.e2. https://doi.org/10.1016/j.ajo.2009.06.009
Article
PubMed
Google Scholar
Declerck P, Behets J, Margineanu A, van Hoef V, De Keersmaecker B, Ollevier F (2009) Replication of Legionella pneumophila in biofilms of water distribution pipes. Microbiol Res 164:593–603. https://doi.org/10.1016/j.micres.2007.06.001
CAS
Article
PubMed
Google Scholar
Declerck P, Behets J, van Hoef V, Ollevier F (2007a) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167. https://doi.org/10.1016/j.watres.2007.04.011
CAS
Article
PubMed
Google Scholar
Declerck P, Behets J, van Hoef V, Ollevier F (2007b) Replication of Legionella pneumophila in floating biofilms. Curr Microbiol 55:435–440. https://doi.org/10.1007/s00284-007-9006-7
CAS
Article
PubMed
Google Scholar
Del Pozo JL (2018) Biofilm-related disease. Expert Rev Anti Infect Ther 16:51–65. https://doi.org/10.1080/14787210.2018.1417036
CAS
Article
PubMed
Google Scholar
Del Pozo JL, Patel R (2013) Are antibiotics and surgery sufficient to treat biofilm-associated infections? Enferm Infecc Microbiol Clin 31:641–642. https://doi.org/10.1016/j.eimc.2013.10.001
Article
PubMed
Google Scholar
Di Cave D, Monno R, Bottalico P, Guerriero S, D’Amelio S, D’Orazi C, Berrilli F (2009) Acanthamoeba T4 and T15 genotypes associated with keratitis infections in Italy. Eur J Clin Microbiol Infect Dis 28:607–612. https://doi.org/10.1007/s10096-008-0682-4
Article
PubMed
Google Scholar
Eddyani M, De Jonckheere JF, Durnez L, Suykerbuyk P, Leirs H, Portaels F (2008) Occurrence of free-living amoebae in communities of low and high endemicity for Buruli ulcer in southern Benin. Appl Environ Microbiol 74:6547–6553. https://doi.org/10.1128/AEM.01066-08
CAS
Article
PubMed
PubMed Central
Google Scholar
Flemming HC, Wuertz S (2019) Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17:247–260. https://doi.org/10.1038/s41579-019-0158-9
CAS
Article
PubMed
Google Scholar
Franco F, Spratt D, Leao J, Porter S (2005) Biofilm formation and control in dental unit waterlines. Biofilms 2:9–17. https://doi.org/10.1017/S1479050504001450
Article
Google Scholar
Gill MA, Rafique MW, Manan T, Slaeem S, Romling U, Matin A, Ahmad I (2018) The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Parasitol Res 117:2283–2289. https://doi.org/10.1007/s00436-018-5917-4
Article
PubMed
Google Scholar
Gomes TS, Vaccaro L, Magnet A, Izquierdo F, Ollero D, Martinez-Fernandez C, Mayo L, Moran M, Pozuelo MJ, Fenoy S, Hurtado C, Del Aguila C (2020) Presence and interaction of free-living amoebae and amoeba-resisting bacteria in water from drinking water treatment plants. Sci Total Environ 719:137080. https://doi.org/10.1016/j.scitotenv.2020.137080
CAS
Article
PubMed
Google Scholar
Gorlin AI, Gabriel MM, Wilson LA, Ahearn DG (1996) Binding of Acanthamoeba to hydrogel contact lenses. Current Eye Res 15:151–155. https://doi.org/10.3109/02713689608997408
CAS
Article
Google Scholar
Hassett DJ, Limbach PA, Hennigan RF, Klose KE, Hancock RE, Platt MD, Hunt DF (2003) Bacterial biofilms of importance to medicine and bioterrorism: proteomic techniques to identify novel vaccine components and drug targets. Expert Opin Biol Ther 3:1201–1207. https://doi.org/10.1517/14712598.3.8.1201
CAS
Article
PubMed
Google Scholar
Hay J, Seal DV (1994) Surveying for legionnaires’ disease bacterium. Current Opin Infect Dis 7:479–483. https://doi.org/10.1097/00001432-199408000-00012
Article
Google Scholar
Hsiao YT, Fang PC, Chen JL, Hsu SL, Chao TL, Yu HJ, Lai YH, Huang YT, Kuo MT (2018) Molecular bioburden of the lens storage case for contact lens-related keratitis. Cornea 37:1542–1550. https://doi.org/10.1097/ico.0000000000001699
Article
PubMed
Google Scholar
Hsu BM, Huang CC, Chen JS, Chen NH, Huang JT (2011) Comparison of potentially pathogenic free-living amoeba hosts by Legionella spp. in substrate-associated biofilms and floating biofilms from spring environments. Water Res 45:5171–5183. https://doi.org/10.1016/j.watres.2011.07.019
CAS
Article
PubMed
Google Scholar
Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244. https://doi.org/10.1111/j.1365-2672.2004.02449.x
CAS
Article
PubMed
Google Scholar
Ibrahim YW, Boase DL, Cree IA (2007) Factors affecting the epidemiology of Acanthamoeba keratitis. Ophthalmic Epidemiol 14:53–60. https://doi.org/10.1080/09286580600920281
Article
PubMed
Google Scholar
Ithoi I, Mahmud R, Abdul Basher MH, Jali A, Abdulsalam AM, Ibrahim J, Mak JW (2013) Acanthamoeba genotype T4 detected in naturally-infected feline corneas found to be in homology with those causing human keratitis. Trop Biomed 30:131–140
CAS
PubMed
Google Scholar
Kalra SK, Sharma P, Shyam K, Tejan N, Ghoshal U (2020) Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 208:107788. https://doi.org/10.1016/j.exppara.2019.107788
Article
PubMed
Google Scholar
Karakavuk M, Aykur M, Sahar EA, Karakus M, Aldemir D, Donduren O, Ozdemir HG, Can H, Guruz AY, Dagci H, Doskaya M (2017) First time identification of Acanthamoeba genotypes in the cornea samples of wild birds; Is Acanthamoeba keratitis making the predatory birds a target? Exp Parasitol 183:137–142. https://doi.org/10.1016/j.exppara.2017.08.007
Article
PubMed
Google Scholar
Kinner N, Curds C (1987) Development of protozoan and metazoan communities in rotating biological contactor biofilms. Water Res 21:481–490. https://doi.org/10.1016/0043-1354(87)90197-7
CAS
Article
Google Scholar
Koh KS, Matz C, Tan CH, Le HL, Rice SA, Marshall DJ, Steinberg PD, Kjelleberg S (2012) Minimal increase in genetic diversity enhances predation resistance. Mol Ecol 21:1741–1753. https://doi.org/10.1111/j.1365-294X.2011.05415.x
Article
PubMed
Google Scholar
Lasjerdi Z, Niyyati M, Haghighi A, Shahabi S, Biderouni FT, Taghipour N, Eftekhar M, Mojarad EN (2011) Potentially pathogenic free-living amoebae isolated from hospital wards with immunodeficient patients in Tehran. Iran Parasitol Res 109:575–580. https://doi.org/10.1007/s00436-011-2288-5
Article
PubMed
Google Scholar
Leduc A, Gravel S, Abikhzer J, Roy S, Barbeau J (2012) Polymerase chain reaction detection of potentially pathogenic free-living amoebae in dental units. Can J Microbiol 58:884–886. https://doi.org/10.1139/w2012-071
CAS
Article
PubMed
Google Scholar
Lee GH, Lee JE, Park MK, Yu HS (2016) Adhesion of Acanthamoeba on silicone hydrogel contact lenses. Cornea 35:663–668. https://doi.org/10.1097/ICO.0000000000000788
Article
PubMed
Google Scholar
Lek-Uthai U, Passara R, Roongruangchai K (2009) Morphological features of Acanthamoeba causing keratitis contaminated from contact lens cases. J Med Assoc Thai 92:S156–S163
PubMed
Google Scholar
Liu L, Xing X, Hu C, Wang H, Lyu L (2019) Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. Chemosphere 219:971–980. https://doi.org/10.1016/j.chemosphere.2018.12.067
CAS
Article
PubMed
Google Scholar
Lorenzo-Morales J, Khan NA, Walochnik J (2015) An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22:10. https://doi.org/10.1051/parasite/2015010
Article
PubMed
PubMed Central
Google Scholar
Loret JF, Greub G (2010) Free-living amoebae: biological by-passes in water treatment. Int J Hyg Environ Health 213:167–175. https://doi.org/10.1016/j.ijheh.2010.03.004
CAS
Article
PubMed
Google Scholar
Lu J, Buse HY, Gomez-Alvarez V, Struewing I, Santo Domingo J, Ashbolt NJ (2014) Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and Legionella pneumophila colonization. J Appl Microbiol 117:905–918. https://doi.org/10.1111/jam.12578
CAS
Article
PubMed
Google Scholar
Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307. https://doi.org/10.1128/cmr.16.2.273-307.2003
Article
PubMed
PubMed Central
Google Scholar
Martin-Cereceda M, Perez-Uz B, Serrano S, Guinea A (2002) An integrated approach to analyse biofilms of a full scale wastewater treatment plant. Water Sci Technol 46:199–206. https://doi.org/10.2166/wst.2002.0478
CAS
Article
PubMed
Google Scholar
Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 7:583–598. https://doi.org/10.1111/j.1750-3639.1997.tb01076.x
CAS
Article
PubMed
Google Scholar
Matz C, Moreno AM, Alhede M, Manefield M, Hauser AR, Givskov M, Kjelleberg S (2008a) Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2:843–852. https://doi.org/10.1038/ismej.2008.47
Article
PubMed
Google Scholar
Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, Steinberg P, Kjelleberg S (2008b) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One 3:e2744. https://doi.org/10.1371/journal.pone.0002744
CAS
Article
PubMed
PubMed Central
Google Scholar
Mogoa E, Bodet C, Legube B, Hechard Y (2010) Acanthamoeba castellanii: cellular changes induced by chlorination. Exp Parasitol 126:97–102. https://doi.org/10.1016/j.exppara.2009.12.005
CAS
Article
PubMed
Google Scholar
Montoya A, Miro G, Saugar JM, Fernandez B, Checa R, Galvez R, Bailo B, Marino V, Pinero JE, Lorenzo-Morales J, Fuentes I (2018) Detection and molecular characterization of Acanthamoeba spp. in stray cats from Madrid. Spain Exp Parasitol 188:8–12. https://doi.org/10.1016/j.exppara.2018.02.011
Article
PubMed
Google Scholar
Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H (2020) Legionella pneumophila and protozoan hosts: implications for the control of hospital and potable water systems. Pathogens 9:286. https://doi.org/10.3390/pathogens9040286
CAS
Article
PubMed Central
Google Scholar
Noorian P, Hu J, Chen Z, Kjelleberg S, Wilkins MR, Sun S, McDougald D (2017) Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii. FEMS Microbiol Ecol 93:fix147. https://doi.org/10.1093/femsec/fix147
Ovrutsky A, Kartalija M, Bai X, Jackson MC, Gibbs S, Falkinham J, Iseman M, Reynolds PR, Chan ED, Thomas V (2011) Free-living amoebae and endosymbiotic non-tuberculous mycobacteria in hospital water and biofilm samples: isolation, identification and susceptibility to aldehydes. In: American Thoracic Society (ed) B56. Nontuberculous mycobacteria: epidemiology and diagnostics. American Thoracic Society, Colorado, USA, p A3316
Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham JO, Iseman MD, Reynolds PR, McDonnell G, Thomas V (2013) Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79:3185–3192. https://doi.org/10.1128/AEM.03823-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Paniagua AT, Paranjape K, Hu M, Bedard E, Faucher SP (2020) Impact of temperature on Legionella pneumophila, its protozoan host cells, and the microbial diversity of the biofilm community of a pilot cooling tower. Sci Total Environ 712:136131. https://doi.org/10.1016/j.scitotenv.2019.136131
CAS
Article
PubMed
Google Scholar
Parry JD, Holmes AK, Unwin ME, Laybourn-Parry J (2007) The use of ultrasonic imaging to evaluate the effect of protozoan grazing and movement on the topography of bacterial biofilms. Lett Appl Microbiol 45:364–370. https://doi.org/10.1111/j.1472-765X.2007.02213.x
CAS
Article
PubMed
Google Scholar
Pens CJ, da Costa M, Fadanelli C, Caumo K, Rott M (2008) Acanthamoeba spp. and bacterial contamination in contact lens storage cases and the relationship to user profiles. Parasitol Res 103:1241–1245. https://doi.org/10.1007/s00436-008-1120-3
Article
PubMed
Google Scholar
Poor BM, Dalimi A, Ghafarifar F, Khoshzaban F, Abdolalizadeh J (2018) Contamination of swimming pools and hot tubs biofilms with Acanthamoeba. Acta Parasitol 63:147–153. https://doi.org/10.1515/ap-2018-0016
CAS
Article
PubMed
Google Scholar
Proctor CR, Reimann M, Vriens B, Hammes F (2018) Biofilms in shower hoses. Water Res 131:274–286. https://doi.org/10.1016/j.watres.2017.12.027
CAS
Article
PubMed
Google Scholar
Queck SY, Weitere M, Moreno AM, Rice SA, Kjelleberg S (2006) The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. Environ Microbiol 8:1017–1025. https://doi.org/10.1111/j.1462-2920.2006.00993.x
Article
PubMed
Google Scholar
Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ (2006) Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 44:3589–3595. https://doi.org/10.1128/jcm.00875-06
CAS
Article
PubMed
PubMed Central
Google Scholar
Raftery TD, Lindler H, McNealy TL (2013) Altered host cell-bacteria interaction due to nanoparticle interaction with a bacterial biofilm. Microb Ecol 65:496–503. https://doi.org/10.1007/s00248-012-0128-5
CAS
Article
PubMed
Google Scholar
Ramachandran L, Janakiraman D, Sharma S, Rao GN (1997) Effect of time and washing on the adhesion of Acanthamoeba to extended wear disposable hydrogel contact lenses. CLAO J 23:113–116
CAS
PubMed
Google Scholar
Saad MAH, Khalil HS (2018) Biofilm testing of microbiota: an essential step during corneal scrap examination in Egyptian acanthamoebic keratitis cases. Parasitol Int 67:556–564. https://doi.org/10.1016/j.parint.2018.05.001
Article
Google Scholar
Schoen ME, Ashbolt NJ (2011) An in-premise model for Legionella exposure during showering events. Water Res 45:5826–5836. https://doi.org/10.1016/j.watres.2011.08.031
CAS
Article
PubMed
Google Scholar
Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027. https://doi.org/10.1016/j.ijpara.2004.06.004
Article
PubMed
Google Scholar
Seal DV, Bennett ES, McFadyen AK, Todd E, Tomlinson A (1995) Differential adherence of Acanthamoeba to contact lenses: effects of material characteristics. Optom vis Sci 72:23–28. https://doi.org/10.1097/00006324-199501000-00005
CAS
Article
PubMed
Google Scholar
Seiler C, van Velzen E, Neu TR, Gaedke U, Berendonk TU, Weitere M (2017) Grazing resistance of bacterial biofilms: a matter of predators' feeding trait. FEMS Microbiol Ecol 93:fix112. https://doi.org/10.1093/femsec/fix112
Shaheen M, Scott C, Ashbolt NJ (2019) Long-term persistence of infectious Legionella with free-living amoebae in drinking water biofilms. Int J Hyg Environ Health 222:678–686. https://doi.org/10.1016/j.ijheh.2019.04.007
Article
PubMed
Google Scholar
Simmons PA, Tomlinson A, Seal DV (1998) The role of Pseudomonas aeruginosa biofilm in the attachment of Acanthamoeba to four types of hydrogel contact lens materials. Optom vis Sci 75:860–866. https://doi.org/10.1097/00006324-199812000-00007
CAS
Article
PubMed
Google Scholar
Snelling WJ, Moore JE, McKenna JP, Lecky DM, Dooley JS (2006) Bacterial-protozoa interactions; an update on the role these phenomena play towards human illness. Microbes Infect 8:578–587. https://doi.org/10.1016/j.micinf.2005.09.001
CAS
Article
PubMed
Google Scholar
Stockman LJ, Wright CJ, Visvesvara GS, Fields BS, Beach MJ (2011) Prevalence of Acanthamoeba spp. and other free-living amoebae in household water, Ohio, USA–1990-1992. Parasitol Res 108:621–627. https://doi.org/10.1007/s00436-010-2120-7
Article
PubMed
Google Scholar
Suarez C, Persson F, Hermansson M (2015) Predation of nitritation-anammox biofilms used for nitrogen removal from wastewater. FEMS Microbiol Ecol 91:fiv124. https://doi.org/10.1093/femsec/fiv124
Sun S, Kjelleberg S, McDougald D (2013) Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS One 8:e56338. https://doi.org/10.1371/journal.pone.0056338
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun X, Wang Z (2018) Acanthamoeba keratitis: diagnosis and treatment. 1st edn. Springer Nature Singapore, Beijing, China
Taravaud A, Ali M, Lafosse B, Nicolas V, Feliers C, Thibert S, Levi Y, Loiseau PM, Pomel S (2018) Enrichment of free-living amoebae in biofilms developed at upper water levels in drinking water storage towers: an inter- and intra-seasonal study. Sci Total Environ 633:157–166. https://doi.org/10.1016/j.scitotenv.2018.03.178
CAS
Article
PubMed
Google Scholar
Thomas JM, Ashbolt NJ (2011) Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ Sci Technol 45:860–869. https://doi.org/10.1021/es102876y
CAS
Article
PubMed
Google Scholar
Thomas JM, Thomas T, Stuetz RM, Ashbolt NJ (2014) Your garden hose: a potential health risk due to Legionella spp. growth facilitated by free-living amoebae. Environ Sci Technol 48:10456–10464. https://doi.org/10.1021/es502652n
CAS
Article
PubMed
Google Scholar
Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Levi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97:950–963. https://doi.org/10.1111/j.1365-2672.2004.02391.x
CAS
Article
PubMed
Google Scholar
Tomlinson A, Simmons PA, Seal DV, McFadyen AK (2000) Salicylate inhibition of Acanthamoeba attachment to contact lenses: a model to reduce risk of infection. Ophthalmology 107:112–117. https://doi.org/10.1016/s0161-6420(99)00055-x
CAS
Article
PubMed
Google Scholar
Tortora GJ (2010a) Microbiology: an introduction. In: Cummings B (ed) The microbial world and you. 10th edn. Pearson Education, San Francisco, California, USA, pp 18–19
Tortora GJ (2010b) Microbiology: an introduction. In: Cummings B (ed) Microbial growth. 10th edn. Pearson Education, San Francisco, California, USA, p 163
Valladares M, Reyes-Batlle M, Martin-Navarro CM, Lopez-Arencibia A, Dorta-Gorrin A, Wagner C, Martinez-Carretero E, Pinero JE, Valladares B, Lorenzo-Morales J (2015) Molecular characterization of Acanthamoeba strains isolated from domestic dogs in Tenerife, Canary Islands, Spain. Arch Microbiol 197:639–643. https://doi.org/10.1007/s00203-015-1096-1
CAS
Article
PubMed
Google Scholar
Valster RM, Wullings BA, van den Berg R, van der Kooij D (2011) Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol 77:7321–7328. https://doi.org/10.1128/AEM.05575-11
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Kooij D, Bakker GL, Italiaander R, Veenendaal HR, Wullings BA (2017) Biofilm composition and threshold concentration for growth of Legionella pneumophila on surfaces exposed to flowing warm tap water without disinfectant. Appl Environ Microbiol 83:e02737-e2816. https://doi.org/10.1128/AEM.02737-16
Article
PubMed
PubMed Central
Google Scholar
Verhoeven AB, Durham-Colleran MW, Pierson T, Boswell WT, Van Hoek ML (2010) Francisella philomiragia biofilm formation and interaction with the aquatic protist Acanthamoeba castellanii. Biol Bull 219:178–188. https://doi.org/10.1086/BBLv219n2p178
Article
PubMed
Google Scholar
Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26. https://doi.org/10.1111/j.1574-695x.2007.00232.x
CAS
Article
PubMed
Google Scholar
Walkden A, Fullwood C, Tan SZ, Au L, Armstrong M, Brahma AK, Chidambaram JD, Carley F (2018) Association between season, temperature and causative organism in microbial keratitis in the UK. Cornea 37:1555–1560. https://doi.org/10.1097/ICO.0000000000001748
Article
PubMed
PubMed Central
Google Scholar
Wang H, Hu C, Zhang S, Liu L, Xing X (2018) Effects of O3/Cl2 disinfection on corrosion and opportunistic pathogens growth in drinking water distribution systems. J Environ Sci 73:38–46. https://doi.org/10.1016/j.jes.2018.01.009
Article
Google Scholar
Wang H, Pryor MA, Edwards MA, Falkinham JO 3rd, Pruden A (2013) Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. Water Res 47:5760–5772. https://doi.org/10.1016/j.watres.2013.06.052
CAS
Article
PubMed
Google Scholar
Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601. https://doi.org/10.1111/j.1462-2920.2005.00851.x
CAS
Article
PubMed
Google Scholar
Willcox MD (2013) Microbial adhesion to silicone hydrogel lenses: a review. Eye Contact Lens 39:61–66. https://doi.org/10.1097/ICL.0b013e318275e284
Article
PubMed
Google Scholar
Winiecka-Krusnell J, Linder E (2001) Bacterial infections of free-living amoebae. Res Microbiol 152:613–619. https://doi.org/10.1016/s0923-2508(01)01240-2
CAS
Article
PubMed
Google Scholar
Xing X, Wang H, Hu C, Liu L (2018) Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems. Water Res 139:168–176. https://doi.org/10.1016/j.watres.2018.03.073
CAS
Article
PubMed
Google Scholar
Zeybek Z, Turkmen A (2020) Investigation of the incidence of Legionella and free-living amoebae in swimming pool waters and biofilm specimens in Istanbul by different methods. Mikrobiyol Bul 54:50–65. https://doi.org/10.5578/mb.68962
Article
PubMed
Google Scholar