Skip to main content

Advertisement

Log in

Giardia intestinalis coiled-coil cytolinker protein 259 interacts with actin and tubulin

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Giardia intestinalis is a human parasite that causes a diarrheal disease in developing countries. G. intestinalis has a cytoskeleton (CSK) composed of microtubules and microfilaments, and the Giardia genome does not code for the canonical CSK-binding proteins described in other eukaryotic cells. To identify candidate actin and tubulin cross-linking proteins, we performed a BLAST analysis of the Giardia genome using a spectraplakins consensus sequence as a query. Based on the highest BLAST score, we selected a 259-kDa sequence designated as a cytoskeleton linker protein (CLP259). The sequence was cloned in three fragments and characterized by immunoprecipitation, confocal microscopy, and mass spectrometry (MS). CLP259 was located in the cytoplasm in the form of clusters of thick rods and colocalized with actin at numerous sites and with tubulin in the median body. Immunoprecipitation followed by mass spectrometry revealed that CLP259 interacts with structural proteins such as giardins, SALP-1, axonemal, and eight coiled-coils. The vesicular traffic proteins detected were Mu adaptin, Vacuolar ATP synthase subunit B, Bip, Sec61 alpha, NSF, AP complex subunit beta, and dynamin. These results indicate that CLP259 in trophozoites is a CSK linker protein for actin and tubulin and could act as a scaffold protein driving vesicular traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Virgen C-MB, Talamás-Lara D, Lagunes-Guillén A, Martínez-Higuera A, Lazcano A, Espinosa-Cantellano M (2018) Giardia lamblia: identification of peroxisomal-like proteins. Exp Parasitol 191:36–43

    Article  CAS  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, Wang CC, Rangel A, Camacho-Nuez M, Tovar CG, Hernandez JM (2010) Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, guiding the specific vesicles to the cyst wall. PLoS Negl Trop Dis 4:e697

    Article  Google Scholar 

  • Díaz-Barriga F, Carrizales YL, Hernández JM, Domínguez Robles MC, Palmer E, Saborío JL (1989) Interaction of cadmium with actin microfilaments in vitro. Toxicol in Vitro 3:277–284

    Article  Google Scholar 

  • Einarsson E, Ma’ayeh S, Svärd SG (2016) An up-date on Giardia and giardiasis. Curr Opin Microbiol 34:47–52

    Article  Google Scholar 

  • Elmendorf HG, Rohrer SC, Khoury RS, Bouttenot RE, Nash TE (2005) Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains. Int J Parasit 35(9):1001–1011

  • Goodson HV, Jonasson EM (2018) Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol 10:a022608

    Article  Google Scholar 

  • Harterink M, Edwards S, de Haan B, Yau KW, van den Heuvel S, Kapitein LC, Hoogenraad CC (2018) Local microtubule organization promotes cargo transport in C. elegans dendrites. J Cell Sci 131:jcs223107

    Article  Google Scholar 

  • Hohmann T, Dehghani F (2019) The cytoskeleton—a complex interacting meshwork. Cells 8(4):362

    Article  CAS  Google Scholar 

  • Kim J, Park SJ (2016) Identification of a novel microtubule-binding protein in Giardia lamblia. Korean J Parasitol 54:461–469

    Article  CAS  Google Scholar 

  • King SA, Liu H, Wu X (2019) Biomedical potential of mammalian spectraplakin proteins: progress and prospect. Exp Biol Med 244:313

    Article  Google Scholar 

  • Lalle M, Camerini S, Cecchetti S, Sayadi A, Crescenzi M, Pozio E (2012) Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis. J Proteome Res 11:2666–2683

    Article  CAS  Google Scholar 

  • Lauwaet T, Davids BJ, Reiner DS, Gillin FD (2007) Encystation of Giardia lamblia: a model for other parasites. Curr Opin Microbiol 10:554–559

    Article  Google Scholar 

  • Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CC, Davids BJ, Gillin FD (2011) Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 41:1079–1092

    Article  CAS  Google Scholar 

  • Lourenço D, da Silva AI, Terra LL, Guimarães PR, Zingali RB, de Souza W (2012) Proteomic analysis of the ventral disc of Giardia lamblia. BMC Res Notes 5:41

    Article  Google Scholar 

  • Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824

    Article  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD,  Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JEJ, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite giardia lamblia. Science 317(5846):1921–1926

  • Mukhopadhyay A, Quiroz JA, Wolkoff AW (2014) Rab1a regulates sorting of early endocytic vesicles. Am J Physiol Gastrointest Liver Physiol 306:G412–G424

    Article  CAS  Google Scholar 

  • Nosala C, Scott C, Dawson SC (2015) The critical role of the cytoskeleton in the pathogenesis of Giardia. Curr Clin Microbiol Rep 2:155–162

    Article  Google Scholar 

  • Nosala C, Hagen KD, Hilton N, Chase TM, Jones K, Loudermilk R, Nguyen K, Dawson SC (2020) Disc-associated proteins (DAPs) mediate the unusual hyperstability of Giardia’s ventral disc. J Cell Sci 133:jcs227355

    Article  CAS  Google Scholar 

  • Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJR, Cande WZ (2011) An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A 108:6151–6156

    Article  CAS  Google Scholar 

  • Paredez AR, Nayeri A, Xu JW, Krtková J, Cande WZ (2014) Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. Eukaryot Cell 13:776–784

    Article  Google Scholar 

  • Stefanic S, Palm D, Svärd SG, Hehl AB (2006) Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 281:7595–7604

    Article  CAS  Google Scholar 

  • Soh YM, Bürmann F, Shin H-C, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong M-S, Durand-Diebold ML, KimnY-G, Kim HM, Lee NK, Sato M, Oh B-H, Gruber S (2015) Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol Cell 57(2):290–303

  • Sun D, Leung CL, Liem RKH (2000) Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J Cell Sci 114:161–172

    Google Scholar 

  • Svitkina T (2018) The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol 10:a018267

    Article  Google Scholar 

  • Touz MC, Zamponi N (2017) Sorting without a Golgi complex. Traffic 18:637–645

    Article  CAS  Google Scholar 

  • Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB (2014) Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 9:e94089

    Article  Google Scholar 

  • Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Bio 194(4):513–525

  • Winkler C, Denker K, Wortelkamp S, Sickmann A (2007) Silver- and Coomassie-staining protocols: Detection limits and compatibility with ESI MS. ELECTROPHORESIS 28(12):2095–2099

  • Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svärd SG, Touz MC (2017) Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoan Giardia lamblia. Traffic 18:604–621

    Article  CAS  Google Scholar 

  • Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB (2016) Static clathrin assemblies at the peripheral vacuole—plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog 12:e1005756

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Miss Jimena Hernández León for the critical review. The authors thank LaNSE CINVESTAV, for the mass spectrometry analysis.

Funding

This work was supported by CONACyT 180016, SIP-IPN 20200344, and a doctoral scholarship granted to Omar Rojas-Gutiérrez.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gloria León-Avila or José Manuel Hernández.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

All procedures performed in animals were done in accordance with the 362 Mexican Law for the Production, Care and Use of Laboratory Animals (NOM-062-ZOO-1999).

Additional information

Section Editor: Yaoyu Fen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 13 kb)

ESM 5

(XLSX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Gutiérrez, O., Pérez-Rangel, A., Castillo-Romero, A. et al. Giardia intestinalis coiled-coil cytolinker protein 259 interacts with actin and tubulin. Parasitol Res 120, 1067–1076 (2021). https://doi.org/10.1007/s00436-021-07062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07062-6

Keywords

Navigation