Skip to main content
Log in

Posttreatment temperature influences toxicity of insect growth regulators in Musca domestica

  • Arthropods and Medical Entomology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Musca domestica is one of the major cosmopolitan pests in livestock facilities because it can be both a nuisance and a vector of pathogens to animals. Currently, treatment of animal manure with insect growth regulator (IGR) insecticides is among major practices to control M. domestica throughout the year over wide-ranging environmental temperatures. Fluctuation in daily or seasonal temperature is one of the most established factors impacting toxicity of insecticides against insect pests. In this study, the effect of posttreatment temperature (range, 20–36 °C) on the toxicity of eight IGRs: five chitin synthesis inhibitors (cyromazine, diflubenzuron, lufenuron, novaluron, triflumuron), two juvenile hormone analogs (methoprene, pyriproxyfen), and one ecdysone agonist (methoxyfenozide), was investigated against M. domestica. The toxicity of lufenuron and novaluron increased by 1.78 times over the range of 20–28 °C, and 2.25 and 1.83 times, respectively, over the range of 28–36 °C, with an overall increase by 4.00 and 3.26 times, respectively (i.e., positive temperature coefficient). In contrast, the toxicity of diflubenzuron, pyriproxyfen, and triflumuron decreased by 1.43, 1.89, and 2.10 times, respectively, over the range of 20–28 °C, and 1.70, 2.00, and 1.95 times, respectively, over the range of 28–36 °C, with an overall decrease by 2.43, 3.78, and 4.10 times, respectively. The toxicity of cyromazine, methoprene, and methoxyfenozide did not change significantly. Overall, these data will help stakeholders to choose appropriate insecticides for M. domestica control depending on the prevailing environmental temperature and to avoid misuse of insecticides that ultimately lead to environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Off J Eur Union L 167:1–116

    Google Scholar 

  • Anonymous, (2020). National Center for Biotechnology Information. PubChem Database. Diflubenzuron, CID=37123, https://pubchem.ncbi.nlm.nih.gov/compound/Diflubenzuron (accessed on Apr. 22, 2020).

  • Boina DR, Onagbola EO, Salyani M, Stelinski LL (2009) Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol 102:685–691

    Article  CAS  PubMed  Google Scholar 

  • Cetin H et al (2006) Larvicidal activity of novaluron, a chitin synthesis inhibitor, against the housefly, Musca domestica. J Insect Sci 6:50

    Article  PubMed Central  Google Scholar 

  • Cetin H, Erler F, Yanikoglu A (2009) Survey of insect growth regulator (IGR) resistance in house flies (Musca domestica L.) from southwestern Turkey. J Vector Ecol 34:329–337

    Article  PubMed  Google Scholar 

  • Chandler DR, King RG, Jewess P, Reynolds SE (1991) Temperature effects on the action of acylurea insecticides against tobacco hornworm (Manduca sexta) larvae. Pestic Sci 31:295–304

    Article  CAS  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science. 361:916–919

    Article  CAS  PubMed  Google Scholar 

  • Devillers J (2020) Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ Sci Pollut Res 27:16052–16068 1-17

    Article  CAS  Google Scholar 

  • Donahue WA Jr et al (2017) Lethal effects of the insect growth regulator Cyromazine against three species of filth flies, Musca domestica, Stomoxys calcitrans, and Fannia canicularis (Diptera: Muscidae) in cattle, swine, and chicken manure. J Econ Entomol 110:776–782

    CAS  PubMed  Google Scholar 

  • El-Mahasen A et al (2010) Biological effects of some insect growth regulators on the house fly, musca domestica (diptera: muscidae). Egypt Acad J Biol Sci 3:95–105

    Google Scholar 

  • Fukuda A, Usui M, Okamura M, Dong-Liang H, Tamura Y (2019) Role of flies in the maintenance of antimicrobial resistance in farm environments. Microb Drug Resist 25:127–132

    Article  CAS  PubMed  Google Scholar 

  • Glunt KD, Blanford JI, Paaijmans KP (2013) Chemicals, climate, and control: increasing the effectiveness of malaria vector control tools by considering relevant temperatures. PLoS Pathog 9:e1003602

    Article  PubMed  PubMed Central  Google Scholar 

  • Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem: An International Journal 28:1051–1058

    Article  CAS  Google Scholar 

  • Jegede O et al (2017) Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol Environ Saf 140:214–221

    Article  CAS  PubMed  Google Scholar 

  • Kavallieratos NG et al (2012) Efficacy of insect growth regulators as grain protectants against two stored-product pests in wheat and maize. J Food Prot 75:942–950

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA (2020) Side effects of insecticidal usage in rice farming system on the non-target house fly Musca domestica in Punjab. Pakistan Chemosphere 241:125056

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Akram W (2014) The effect of temperature on the toxicity of insecticides against Musca domestica L.: implications for the effective management of diarrhea. PLoS One 9:e95636

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan HA et al (2012) Effect of livestock manures on the fitness of house fly, Musca domestica L. (Diptera: Muscidae). Parasitol Res 111:1165–1171

    Article  PubMed  Google Scholar 

  • Khan HA et al (2013) Resistance to conventional insecticides in Pakistani populations of Musca domestica L. (Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicology. 22:522–527

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Akram W, Arshad M, Hafeez F (2016) Toxicity and resistance of field collected Musca domestica (Diptera: Muscidae) against insect growth regulator insecticides. Parasitol Res 115:1385–1390

    Article  PubMed  Google Scholar 

  • Khan HAA, Khan MU, Nasiba A, Riaz S, Altaf M (2019) Geographical variations in life histories of house flies, Musca domestica (Diptera: Muscidae), in Punjab. Pakistan J Med Entomol 56:1225–1230

    Article  PubMed  Google Scholar 

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  • King B et al (2020) Feeding response to select monosaccharides, sugar alcohols, and artificial sweeteners relative to sucrose in adult house flies, Musca domestica (Diptera: Muscidae). J Med Entomol 57:511–518

    Article  CAS  PubMed  Google Scholar 

  • Kočišová A et al (2004) The potential of some insect growth regulators in housefly (Musca domestica) control. Biol Bratislava 59:661–668

    Google Scholar 

  • LeOra-Software (2005) PoloPlus user's manual, version 2.0. LeOra Software Petaluma, Petaluma

    Google Scholar 

  • Li Q, Huang J, Yuan J (2018) Status and preliminary mechanism of resistance to insecticides in a field strain of housefly (Musca domestica, L). Revista Brasileira de Entomologia 62:311–314

    Article  Google Scholar 

  • Litchfield J a, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • Malik A, Singh N, Satya S (2007) House fly (Musca domestica): a review of control strategies for a challenging pest. J Environ Sci Health B 42:453–469

    Article  CAS  PubMed  Google Scholar 

  • Malik G et al (2018) Effect of temperature on the toxicity of biorational insecticides against Sitophilus oryzae (Linnaeus) in stored wheat. Pakistan J Zool 50:1199–1600

    Google Scholar 

  • Mao K, Jin R, Li W, Ren Z, Qin X, He S, Li J, Wan H (2019) The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (Stål). Pestic Biochem Physiol 156:80–86

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Macdonald J (1990) Effects of temperature on nervous system: implications for behavioral performance. Am J Phys Regul Integr Comp Phys 259:R191–R196

    CAS  Google Scholar 

  • Musser FR, Shelton AM (2005) The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci: formerly Pesticide Science 61:508–510

    Article  CAS  Google Scholar 

  • Pavela R, Sedlák P (2018) Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind Crop Prod 113:46–49

    Article  CAS  Google Scholar 

  • Robertson JL et al (2017) Bioassays with arthropods. CRC press

  • Satpute N et al (2014) Temperature-dependent variation in toxicity of insecticides against Earias v itella (Lepidoptera: Noctuidae). J Econ Entomol 100:357–360

    Article  Google Scholar 

  • Scott JG et al (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci 56:147–153

    CAS  Google Scholar 

  • Sulaiman S, et al., 2008. Effect of triflumuron and pyriproxyfen on Musca domestica L. Larval Stages Lab.

  • Taylor DB, Friesen K, Zhu JJ, Sievert K (2012) Efficacy of cyromazine to control immature stable flies (Diptera: Muscidae) developing in winter hay feeding sites. J Econ Entomol 105:726–731

    Article  CAS  PubMed  Google Scholar 

  • Tunaz H, Uygun N (2004) Insect growth regulators for insect pest control. Turk J Agric For 28:377–387

    CAS  Google Scholar 

  • Wijayaratne LW et al (2012) Residual efficacy of methoprene for control of Tribolium castaneum (Coleoptera: Tenebrionidae) larvae at different temperatures on varnished wood, concrete, and wheat. J Econ Entomol 105:718–725

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Azhar Ali Khan.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Handling Editor: Una Ryan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.A.A. Posttreatment temperature influences toxicity of insect growth regulators in Musca domestica. Parasitol Res 120, 435–441 (2021). https://doi.org/10.1007/s00436-020-06998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06998-5

Keywords

Navigation