Skip to main content
Log in

Renicolidae infection in Manx shearwater (Puffinus puffinus): is parasitism implicated on renal lesions?

  • Helminthology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Renicolid digeneans are frequently observed in the renal tubules and ureters of seabirds, such Puffinus puffinus, a migratory species distributed along the Brazilian coast. However, few studies have focused on the relationship between renicolid infection and health status in P. puffinus. Thus, the aim of this study was to describe (i) renal and systemic alterations, (ii) the renicolids and (iii) the biological aspects associated with the presence of renicolids in P. puffinus. Gross and histological assays were performed in 93 P. puffinus stranded on the Paraná coast, southern Brazil, and renicolids were submitted to morphological and molecular assays. A high prevalence of renicolids in P. puffinus (71/93) was observed. In the kidney, the main microscopic findings were lymphocytic interstitial infiltrate, ductal ectasia and tubular necrosis. The renal lesions were significantly associated with the parasite infection. The morphological (n = 84) and molecular analyses (n = 2) confirmed the species as Renicola sloanei (100% and 95.9% of nucleotide identity with R. sloanei strains from P. puffinus and from Spheniscus demersus, respectively). In both parasitized and non-parasitized animals, cardiac and skeletal muscle degeneration and necrosis were the most frequent systemic changes. Therefore, the results suggest renicolids being a possible cause for the demonstrated renal alterations. A contribution of this parasite to a decreased health status of Puffinus puffinus along their migratory route is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The study was performed in collaboration with the Beach Monitoring Project of the Santos Basin in Paraná, a requirement established by the federal environmental licencing division of the Brazilian Environmental Agency (IBAMA) to explore the presalt.

References

  • Amato JFR, Amato SB (2010) Técnicas gerais para coleta e preparação de helmintos endoparasitos de aves. In: Von Matter S, Straube FC, Piacentini VQ, Accordi IA, Cândido JF (eds) Ornitologia e conservação: ciência aplicada, técnicas de pesquisa e levantamento. Technical Books, Rio de Janeiro, pp 1–25

    Google Scholar 

  • Behmer AO, Tolosa EMC, Freitas Neto AG (1976) Manual de técnicas para histologia normal e patológica. Edart, São Paulo

    Google Scholar 

  • Campbell JG, Sloan J (1943) A possible new species of trematode parasitic in the kidneys of the king penguin (Aptenodytes longirostris). Vet J 99:291–294. https://doi.org/10.1016/S0372-5545(17)33054-7

    Article  Google Scholar 

  • Eiras JC (1994) Platelminta. In: Eiras JC (ed) Elementos de ictioparasitologia. Fundação Eng Antonio de Almeida, Porto, Portugal, pp 147–169

    Google Scholar 

  • Falkenberg JM, Golzio JES, Pessanha A, Patrício J, Vendel AL, Lacerda AC (2019) Gill parasites of fish and their relation to host and environmental factors in two estuaries in northeastern Brazil. Aquat Ecol 53:109–118. https://doi.org/10.1007/s10452-019-09676-6

    Article  CAS  Google Scholar 

  • Freeman R, Dean B, Kirk H, Leonard K, Phillips RA, Perrins CM, Guilford T (2013) Predictive ethoinformatics reveals the complex migratory behaviour of a pelagic seabird, the Manx shearwater. J R Soc Interface 10:20130279. https://doi.org/10.1098/rsif.2013.0279

    Article  PubMed  PubMed Central  Google Scholar 

  • Galaktionov KV (1996) Impact of seabird helmints on host populations and coastal ecosystems. Bull Scan Soc Parasitol 6:50–64

    Google Scholar 

  • Gibson DI (2008) Family Renicolidae Dollfus, 1939. In: Gibson DI, Jones A (eds) Bray RA. Keys to the trematoda. Publisher, CABI Publishing, London, pp 591–594

    Google Scholar 

  • Gray CM, Hamer KC (2001) Food-provisioning behaviour of male and female Manx shearwaters, Puffinus puffinus. Anim Behav 62:117–121. https://doi.org/10.1006/anbe.2001.1717

    Article  Google Scholar 

  • Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collett M, Freeman R, Perrins CM (2009) Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: insights from machine learning. Proc R Soc B 276:1215–1223. https://doi.org/10.1098/rspb.2008.1577

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez JS, Rakhimberdiev E, Piersma T, Thieltges DW (2017) Migration and parasitism: habitat use, not migration distance, influences helminth species richness in Charadriiform birds. J Biogeogr 44:1137–1147. https://doi.org/10.1111/jbi.12956

    Article  Google Scholar 

  • Heneberg P, Sitko J, Bizos J, Kocková L, Malá M, Literák I (2014) Active chi-like sequences are present in the ITS1 region of polyembryonic adult Collyriclum faba trematodes encysted in pairs. Parasitol Res 113:3211–3220. https://doi.org/10.1007/s00436-014-3982-x

    Article  PubMed  Google Scholar 

  • Heneberg P, Sitko J, Bizos J, Horne EC (2016) Central European parasitic flatworms of the family Renicolidae Dollfus, 1939 (Trematoda: Plagiorchiida): molecular and comparative morphological analysis rejects the synonymization of Renicola pinguis complex suggested by Odening. Parasitology 143:1592–1604. https://doi.org/10.1017/S0031182016000895

    Article  CAS  PubMed  Google Scholar 

  • Hill WCO (1952) Report of the society’s prosector for the year 1951. Proc Zool Soc Lond 122:515–533

    Article  Google Scholar 

  • Hoberg EP (1996) Faunal diversity among avian parasite assemblages: the interaction of history, ecology, and biogeography in marine systems. Bull Scan Soc Parasitol 6:65–89

    Google Scholar 

  • Horne EC, Bray RA, Bousfield B (2011) The presence of the trematodes Cardiocephaloides physalis and Renicola sloanei in the African penguin Spheniscus demersus on the east coast of South Africa. Ostrich 82:157–160. https://doi.org/10.2989/00306525.2011.603484

    Article  Google Scholar 

  • Jerdy H, Baldassin P, Werneck MR, Bianchi M, Ribeiro RB, Carvalho ECQ (2016) First report of kidney lesions due to Renicola sp. (Digenea: Trematoda) in free-living Magellanic penguins (Spheniscus magellanicus Forster, 1781) found on the coast of Brazil. J Parasitol 102:650–652. https://doi.org/10.1645/16-29

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD (2013) Parasites in marine food webs. Bull Mar Sci 89:123–134. https://doi.org/10.5343/bms.2011.1124

    Article  Google Scholar 

  • Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 44:925–931. https://doi.org/10.4319/lo.1999.44.3_part_2.0925

    Article  Google Scholar 

  • Mahdy OA, Shaheed IB (2001) Histopathological study on the effect of Renicola heroni on the kidneys of giant heron Ardea goliath. Helminthologia 38:81–83

    Google Scholar 

  • Mariani DB (2016) Causas de encalhes de aves marinhas no nordeste do Brasil. Dissertation, Universidade Federal Rural de Pernambuco

  • Mariani DB, Almeida BJ, Febrônio AD, Vergara-Parente JE, Souza FAL, Mendonça FS (2019) Causes of mortality of seabirds stranded at the northeastern coast of Brazil. Pesqui Vet Bras 39:523–529. https://doi.org/10.1590/1678-5150-pvb-5812

    Article  Google Scholar 

  • Matos AMRN, Lavorente FLP, Lorenzetti E, Meira-Filho MRC, Nóbrega DF, Chryssafidis AL, Oliveira AG, Domit C, Bracarense APFRL (2019) Molecular identification and histological aspects of Renicola sloanei (Digenea: Renicolidae) in Puffinus puffinus (Aves: Procellariiformes): a first record. Rev Bras Parasitol Vet 28:367–375. https://doi.org/10.1590/S1984-29612019025

    Article  PubMed  Google Scholar 

  • Matos AMRN, Domit C, Bracarense APFRL (2020) Seabirds: studies with parasitofauna and potential indicator for environmental anthropogenic impacts. SEMINA: Ciênc Agrár 41:1439–1450. https://doi.org/10.5433/1679-0359.2020v41n4p1439

    Article  Google Scholar 

  • Melo CMF, Oliveira JB, Athayde ACR, Dantas AFM, Feitosa TF, Vilela VLR, Menezes DJA, Wagner PGC (2012) Identification of parasites in Puffinus puffinus (birds, Procellariiformes) from northeastern Brazil. Vet Res Commun 36:235–238. https://doi.org/10.1007/s11259-012-9530-1

    Article  PubMed  Google Scholar 

  • Munyer PD, Holloway HL Jr (1990) Renicola williamsi n. sp. (Trematoda: Digenea: Renicolidae) from the south polar skua, Catharacta maccormiki. Trans Am Microsc Soc 109:98–102

    Article  Google Scholar 

  • Myers RK, McGavin MD (2007) Cellular and tissue responses in: McGavin MD, Zachary JF (eds) pathology basis of veterinary disease, 4th edn. Elsevier, Philadelphia, pp 3–62

    Google Scholar 

  • Onley D, Scofield P (2007) Field guide to the albatrosses, petrels and shearwaters. Christopher Helm, London

    Google Scholar 

  • Penn DJ (2001) Coevolution: host-parasite. Trends Genet 8:213–219. https://doi.org/10.1038/npg.els.0001765

    Article  Google Scholar 

  • Petrobras (2019) Gerenciamento e Execução do Projeto de Monitoramento de Praias da Bacia de Santos – Fase 1. 3° Relatório Técnico Annual, Versão 00, Abril/2019. Univali, Itajaí, Santa Catarina. https://www.comunicabaciadesantos.com.br/programa-ambiental/projeto-de-monitoramento-de-praias-pmp.html. Accessed 18 August 2019

  • Pugliares KR, Bogomolni AL, Touhey KM, Herzig SM, Harry CT, Moore MJ (2007) Marine mammal necropsy: an introductory guide for stranding responders and field biologists. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

    Book  Google Scholar 

  • R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 04 February 2020

  • Riley J, Owen RW (1972) Renicola glacialis sp. nov., a new trematode from the North Sea fulmar, Fulmarus glacialis (L.), with observations on its pathology. J Helminthol 46:63–72. https://doi.org/10.1017/S0022149X00022124

    Article  CAS  PubMed  Google Scholar 

  • Romagnano A (1999) Examination and preventive medicine protocols in psittacines. Vet Clin North Am Exot Anim Pract 211:333–355. https://doi.org/10.1016/s1094-9194(17)30127-5

    Article  Google Scholar 

  • Routtu J, Grunberg D, Izhar R, Dagan Y, Guttel Y, Ucko M, Ben-Ami F (2014) Selective and universal primers for trematode barcoding in freshwater snails. Parasitol Res 113:2535–2540. https://doi.org/10.1007/s00436-014-3903-z

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Godoy M, de León GPP, Mendoza-Garfias B, Carmona-Isunza MC, la Mora AND, Drummond H (2011) Helminth parasites of the blue-footed booby on Isla Isabel, México. J Parasitol 97:636–641

    Article  Google Scholar 

  • Schmidt RE, Reavill DR, Phalen DN (2015) Musculoskeletal system in: Schmidt RE, Reavill DR, Phalen DN (eds) pathology of pet and aviary birds. John Wiley & Sons, Iowa, pp 199–220

    Google Scholar 

  • Sick H (1997) Ordem Procellariiformes. In: Sick H (ed) Ornitologia brasileira. Nova Fronteira, Rio de Janeiro, pp 175–185

    Google Scholar 

  • Sitko J, Heneberg P (2015) Host specificity and seasonality of helminth component communities in central European grebes (Podicipediformes) and loons (Gaviiformes). Parasitol Int 64:377–388. https://doi.org/10.1016/j.parint.2015.05.012

    Article  PubMed  Google Scholar 

  • Stacy BA, Frankovich T, Greiner E, Alleman AR, Herbst LH, Klein P, Bolten A, McIntosh A, Jacobson ER (2010) Detection of spirorchiid trematodes in gastropod tissues by polymerase chain reaction: preliminary identification of an intermediate host of Learedius learedi. J Parasitol 96:752–757. https://doi.org/10.1645/GE-2382.1

    Article  PubMed  Google Scholar 

  • Stidworthy MF, Denk D (2018) Sphenisciformes, Gaviiformes, Podicipediformes, Procellarriformes, and Pelecaniformes. In: Terio KA, Leger JS, McAloose D (eds) Pathology of wildlife and zoo animals. Elsevier, Philadelphia, pp 653–686

    Chapter  Google Scholar 

  • Thatcher VE (1993) Renicolidae. In: Thatcher VE (ed) Trematódeos Neotropicais. Instituto Nacional de Pesquisas da Amazônia, Manaus, pp 200–201

    Google Scholar 

  • Thieltges DW, Hussel B, Baekgaard H (2006) Endoparasites in common eiders Somateria mollissima from birds killed by an oil spill in the northern Wadden Sea. J Sea Res 55:301–308. https://doi.org/10.1016/j.seares.2005.12.001

    Article  Google Scholar 

  • Vleet JF, Ferrans VJ (2007) Cardiovascular system. In: McGavin MD, Zachary JF (eds) Pathology basis of veterinary disease. Elsevier, Philadelphia, pp 559–611

    Google Scholar 

  • Vooren VM, Brusque LF (1999) As aves do ambiente costeiro do Brasil: biodiversidade e conservação. Fundação UFRG, Rio Grande

    Google Scholar 

  • Wright CA (1954a) Trematodes of the genus Renicola from birds in British zoos, with descriptions of two new species. Proc Zool Soc Lond 124:51–61. https://doi.org/10.1111/j.1096-3642.1954.tb01477.x

    Article  Google Scholar 

  • Wright CA (1954b) Trematodes of the genus Renicola from the kidneys of birds in Brazil. Rev Bras Bio 14:61–64

    Google Scholar 

  • Wright CA (1956) Studies on the life-history and ecology of the trematode genus Renicola Cohn, 1904. Proc Zool Soc Lond 126:1–50. https://doi.org/10.1111/j.1096-3642.1956.tb00423.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the collaborators of the Beach Monitoring Project of the Santos Basin in Paraná, a requirement established by the federal environmental licencing division of the Brazilian Environmental Agency (IBAMA) and Ângela Teresa Silva e Souza for the contribution with the histology of the parasites. In addition, this study was the subject of the MSc thesis by Matos, A. at Universidade Estadual de Londrina.

Funding

Matos A. and Bracarense A. P. were financed by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) from the Brazilian government.

Author information

Authors and Affiliations

Authors

Contributions

Andressa M. Rorato N. de Matos: delineating of the study, molecular and morphological analysis, histopathology, and writing

Mário R. C. Meira Filho: parasitological analysis and writing

Elis Lorenzetti and Fernanda L. L. Pereira: molecular analysis and writing

Eloiza T. Caldart: statistical evaluations and writing

Thiago Bizari and Ricardo L. N. de Matos: histological analysis

Camila Domit: critical revision

Ana Paula F. R. L. Bracarense: delineating of the study, writing and critical revision

Corresponding author

Correspondence to Ana Paula Frederico Rodrigues Loureiro Bracarense.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

SISBIO 640/2015 (Ministry of Environment-MMA)

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Section Editor: Christoph G. Grevelding

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 34 kb)

ESM 2

(JPG 55 kb)

ESM 3

(JPG 125 kb)

ESM 4

(MAS 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Matos, A.M.R.N., Meira-Filho, M.R.C., Lorenzetti, E. et al. Renicolidae infection in Manx shearwater (Puffinus puffinus): is parasitism implicated on renal lesions?. Parasitol Res 120, 1311–1320 (2021). https://doi.org/10.1007/s00436-020-06959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06959-y

Keywords

Navigation