Amiri E, Strand MK, Rueppell O, Tarpy DR (2017) Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects 8:48. https://doi.org/10.3390/insects8020048
Article
PubMed Central
Google Scholar
Angamuthu R, Baskaran S, Gopal R, Devarajan J, Kathaperumal K (2012) Rapid detection of the Marek’s disease viral genome in chicken feathers by loop-mediated isothermal amplification. J Clin Microbiol 50:961–965. https://doi.org/10.1128/JCM.05408-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290. https://doi.org/10.1111/j.1462-2920.2009.01953.x
CAS
Article
PubMed
Google Scholar
Arbulo N, Antúnez K, Salvarrey S, Santos E, Branchiccela B, Martín-Hernández R, Higes M, Invernizzi C (2015) High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J Invertebr Pathol 130:165–168. https://doi.org/10.1016/j.jip.2015.07.018
CAS
Article
PubMed
Google Scholar
Aronstein KA, Webster TC, Saldivar E (2013) A serological method for detection of Nosema ceranae. J Appl Microbiol 114:621–625. https://doi.org/10.1111/jam.12066
CAS
Article
PubMed
Google Scholar
Aufauvre J, Biron DG, Vidau C, Fontbonne R, Roudel M, Diogon M, Viguès B, Belzunces LP, Delbac F, Blot N (2012) Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Sci Rep 2:326. https://doi.org/10.1038/srep00326
CAS
Article
PubMed
PubMed Central
Google Scholar
Aufauvre J, Misme-Aucouturier B, Viguès B, Texier C, Delbac F, Blot N (2014) Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One 9:e91686. https://doi.org/10.1371/journal.pone.0091686
CAS
Article
PubMed
PubMed Central
Google Scholar
Bourgeois L, Beaman L, Holloway B, Rinderer TE (2012) External and internal detection of Nosema ceranae on honey bees using real-time PCR. J Invertebr Pathol 109:323–325. https://doi.org/10.1016/j.jip.2012.01.002
CAS
Article
PubMed
Google Scholar
Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS (2012) Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J Insect Physiol 58:1090–1095. https://doi.org/10.1016/j.jinsphys.2012.04.016
CAS
Article
PubMed
Google Scholar
Chen YP, Evans JD, Murphy C, Gutell R, Zuker M, Gundensen-Rindal D, Pettis JS (2009) Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J Eukaryot Microbiol 56:142–147. https://doi.org/10.1111/j.1550-7408.2008.00374.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Cilia G, Cabbri R, Maiorana G, Cardaio I, Dall’Olio R, Nanetti A (2018) A novel TaqMan assay for Nosema ceranae quantification in honey bee, based on the protein coding gene Hsp70. Eur J Protistol 63:44–50. https://doi.org/10.1016/j.ejop.2018.01.007
Article
PubMed
Google Scholar
Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshottet JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Cole RJ (1970) The application of the “triangulation” method to the purification of Nosema spores from insect tissues. J Invertebr Pathology 15:193–195. https://doi.org/10.1016/0022-2011(70)90233-8
Article
Google Scholar
Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S, Kretzchmar A, le Conte Y (2013) Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J Invertebr Pathol 113:42–51. https://doi.org/10.1016/j.jip.2013.01.002
CAS
Article
PubMed
Google Scholar
Erler S, Lommatzsch S, Lattorff HMG (2012) Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris. Parasitol Res 110:1403–1410. https://doi.org/10.1007/s00436-011-2640-9
Article
PubMed
Google Scholar
Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217. https://doi.org/10.1016/j.vetpar.2010.02.010
Article
PubMed
Google Scholar
Fries I (1993) Nosema apis—a parasite in the honey bee colony. Bee World 74:5–19. https://doi.org/10.1080/0005772X.1993.11099149
Article
Google Scholar
Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79. https://doi.org/10.1016/j.jip.2009.06.017
Article
PubMed
Google Scholar
Fries I, Feng F, Da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eu J Protistol 32:356–365. https://doi.org/10.1016/S0932-4739(96)80059-9
Article
Google Scholar
Fries I, Chauzat MP, Chen YP, Doublet V, Genersch E, Gisder S, Higes M, McMahon DP, Martín-Hernández R, Natsopoulou M, Paxton RJ, Tanner G, Webster TC, Williams GR (2013) Standard methods for Nosema research. J Apic Res 52:1–28. https://doi.org/10.3896/IBRA.1.52.1.14
Article
Google Scholar
Gallai N, Salles J, Settele J, Vaissiere B (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014
Article
Google Scholar
Genersch E (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97. https://doi.org/10.1007/s00253-010-2573-8
CAS
Article
PubMed
Google Scholar
Gisder S, Genersch E (2013) Molecular differentiation of Nosema apis and Nosema ceranae based on species–specific sequence differences in a protein coding gene. J Invertebr Pathol 113:1–6. https://doi.org/10.1016/j.jip.2013.01.004
CAS
Article
PubMed
Google Scholar
Gisder S, Hedtke K, Möckel N, Frielitz MC, Linde A, Genersch E (2010) Five-year cohort study of nosema spp. in Germany: does climate shape virulence and assertiveness of Nosema ceranae? Appl Environ Microbiol 76:3032–3038. https://doi.org/10.1128/AEM.03097-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Gisder S, Schüler V, Horchler LL, Groth D, Genersch E (2017) Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Front Cell Infect Microbiol 7:301. https://doi.org/10.3389/fcimb.2017.00301
Article
PubMed
PubMed Central
Google Scholar
Gisder S, Horchler L, Pieper F, Schüler V, Šima P, Genersch E (2020) Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. Appl Environ Microbiol 86:e00629–e00620. https://doi.org/10.1128/AEM.00629-20
CAS
Article
PubMed
Google Scholar
Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8:e58165. https://doi.org/10.1371/journal.pone.0058165
CAS
Article
PubMed
PubMed Central
Google Scholar
Guerrero-Molina C, Correa-Benítez A, Hamiduzzaman MM, Guzman-Novoa E (2016) Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall. J Invertebr Pathol 141:38–40. https://doi.org/10.1016/j.jip.2016.11.001
Article
PubMed
Google Scholar
Hamiduzzaman MM, Guzman-Novoa E, Goodwin PH (2010) A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera). J Invertebr Pathol 105:151–155. https://doi.org/10.1016/j.jip.2010.06.001
Article
PubMed
Google Scholar
Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95. https://doi.org/10.1016/j.jip.2006.02.005
CAS
Article
PubMed
Google Scholar
Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV, Barrios L, Del Nozal MJ, Bernal JL, Jiménez JJ, Palencia PG, Meana A (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669. https://doi.org/10.1111/j.1462-2920.2008.01687.x
Article
PubMed
Google Scholar
Higes M, Martín-Hernández R, García-Palencia P, Marín P, Meana A (2009) Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environ Microbiol Rep 1:495–498. https://doi.org/10.1111/j.1758-2229.2009.00052.x
Article
PubMed
Google Scholar
Higes M, Martín-Hernández R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41:375–392. https://doi.org/10.1051/apido/2010019
Article
Google Scholar
Huang WF, Jiang JH, Chen YW, Wang CH (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37. https://doi.org/10.1051/apido:2006054
Article
Google Scholar
Kato Y, Yanagisawa T, Nakai M, Komatsu K, Inoue MN (2020) Direct and sensitive detection of a microsporidian parasite of bumblebees using loop-mediated isothermal amplification (LAMP). Sci Rep 10:1118. https://doi.org/10.1038/s41598-020-57909-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Maria Ruz J, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10. https://doi.org/10.1016/j.jip.2007.02.014
Article
PubMed
Google Scholar
Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O, Müller T, Widder M, Moritz FRA (2015) Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One 10:e0140174. https://doi.org/10.1371/journal.pone.0140174
CAS
Article
PubMed
PubMed Central
Google Scholar
Lautenbach S, Seppelt R, Liebscher J, Dormann CF (2012) Spatial and temporal trends of global pollination benefit. PLoS One 7:e35954. https://doi.org/10.1371/journal.pone.0035954
CAS
Article
PubMed
PubMed Central
Google Scholar
Ma M, Ma C, Li M, Wang S, Yang S, Wang S (2011) Loop-mediated isothermal amplification for rapid detection of Chinese sacbrood virus. J Virol Methods 176:115–119. https://doi.org/10.1016/j.jviromet.2011.05.028
CAS
Article
PubMed
Google Scholar
Martín-Hernández R, Meana A, Prieto L, Salvador AM, Garrido-Bailón E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73:6331–6338. https://doi.org/10.1128/AEM.00270-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M (2018) Nosema ceranae in Apis mellifera: a 12 years postdetection perspective. Environ Microbiol 20:1302–1329. https://doi.org/10.1111/1462-2920.14103
Article
PubMed
Google Scholar
Matović K, Vidanović D, Manić M, Stojiljković M, Radojičić S, Debeljak Z, Šekler M, Ćirić J (2020) Twenty-five-year study of Nosema spp. in honey bees (Apis mellifera) in Serbia. Saudi J Biol Sci 27:518–523. https://doi.org/10.1016/j.sjbs.2019.11.012
CAS
Article
PubMed
Google Scholar
Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100:185–188. https://doi.org/10.1016/j.jip.2008.12.001
Article
PubMed
Google Scholar
Moritz RFA, Erler S (2016) Lost colonies found in a data mine: global honey trade but not pests or pesticides as a major cause of regional honeybee colony decline. Agric Ecosyst Environ 216:44–50. https://doi.org/10.1016/j.agee.2015.09.027
Article
Google Scholar
Narushima J, Kimata S, Soga K, Sugano Y, Kishine M, Takabatake R, Mano J, Kitta K, Kanamaru S, Shirakawa N, Kondo K, Nakamura K (2019) Rapid DNA template preparation directly from a rice sample without purification for loop-mediated isothermal amplification (LAMP) of rice genes. Biosci Biotechnol Biochem 84:670–677. https://doi.org/10.1080/09168451.2019.1701406
CAS
Article
PubMed
Google Scholar
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63. https://doi.org/10.1093/nar/28.12.e63
CAS
Article
PubMed
PubMed Central
Google Scholar
Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y (2005) Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol 71:6730–6735. https://doi.org/10.1128/AEM.71.11.6730-6735.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1:131–135. https://doi.org/10.1111/j.1758-2229.2009.00018.x
Article
PubMed
Google Scholar
Poon LLM, Wong BWY, Ma EHT, Chan KH, Chow LMC, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Peiris JSM (2006) Sensitive and inexpensive molecular test for falciparum malaria: defecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52:303–306. https://doi.org/10.1373/clinchem.2005.057901
CAS
Article
PubMed
Google Scholar
Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229. https://doi.org/10.1038/nature20588
CAS
Article
PubMed
Google Scholar
Przybylska A, Fiedler Ż, Kucharczyk H, Obrępalska-Stęplowska A (2015) Detection of the quarantine species Thrips palmi by loop-mediated isothermal amplification. PLoS One 10:e0122033. https://doi.org/10.1371/journal.pone.0122033
CAS
Article
PubMed
PubMed Central
Google Scholar
Ptaszyńska AA, Borsuk G, Woźniakowski G, Gnat S, Małek W (2014) Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees. FEMS Microbiol Lett 357:40–48. https://doi.org/10.1111/1574-6968.12521
CAS
Article
PubMed
Google Scholar
Sagastume S, Martín-Hernández R, Higes M, Henriques-Gil N (2014) Ribosomal gene polymorphism in small genomes: analysis of different 16S rRNA sequences expressed in the honeybee parasite Nosema ceranae (Microsporidia). J Eukaryot Microbiol 61:42–50. https://doi.org/10.1111/jeu.12084
CAS
Article
PubMed
Google Scholar
Sinpoo C, Disayathanoowat T, Williams PH, Chantawannakul P (2019) Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS One 14:e0213171. https://doi.org/10.1371/journal.pone.0213171
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith KM, Loh EH, Rostal MK, Zambrana-Torrelio CM, Mendiola L, Daszak P (2013) Pathogens, pests, and economics: drivers of honey bee colony declines and losses. EcoHealth 10:434–445. https://doi.org/10.1007/s10393-013-0870-2
Article
PubMed
Google Scholar
Snow JW, Ceylan Koydemir H, Karinca DK, Liang K, Tseng D, Ozcan A (2020) Rapid imaging, detection, and quantification of Nosema ceranae spores in honey bees using mobile phone-based fluorescence microscopy. Lab Chip 19:789–797. https://doi.org/10.1039/c8lc01342j
CAS
Article
Google Scholar
Tsai CC, Shih HC, Ko YZ, Wang RH, Li SJ, Chiang YC (2016) Direct LAMP assay without prior DNA purification for sex determination of papaya. Int J Mol Sci 17:1630. https://doi.org/10.3390/ijms17101630
CAS
Article
PubMed Central
Google Scholar
Urbieta-Magro A, Higes M, Meana A, Gómez-Moracho T, Rodríguez-García C, Barrios L, Martín-Hernández R (2019) The levels of natural Nosema spp. infection in Apis mellifera iberiensis brood stages. Int J Parasitol 49:657–667. https://doi.org/10.1016/j.ijpara.2019.04.002
Article
PubMed
Google Scholar
vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS One 3:e4071. https://doi.org/10.1371/journal.pone.0004071
CAS
Article
PubMed Central
Google Scholar
VanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e6481. https://doi.org/10.1371/journal.pone.0006481
CAS
Article
PubMed
PubMed Central
Google Scholar
vanEngelsdorp D, Tarpy DR, Lengerich EJ, Pettis JS (2013) Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Prev Vet Med 108:225–233. https://doi.org/10.1016/j.prevetmed.2012.08.004
Article
PubMed
Google Scholar
Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. https://doi.org/10.1371/journal.pone.0021550
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang DG, Brewster JD, Paul M, Tomasula PM (2015) Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20:6048–6059. https://doi.org/10.3390/molecules20046048
CAS
Article
PubMed
PubMed Central
Google Scholar
Watts MR, James G, Sultana Y, Ginn AN, Outhred AC, Kong F, Verweij JJ, Iredell JR, Chen SCA, Lee R (2014) A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye. Am J Trop Med Hyg 90:306–311. https://doi.org/10.4269/ajtmh.13-0583
CAS
Article
PubMed
PubMed Central
Google Scholar
Williams GR, Shutler D, Burgher-MacLellan KL, Rogers REL (2014) Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts. PLoS One 9:e99465. https://doi.org/10.1371/journal.pone.0099465
CAS
Article
PubMed
PubMed Central
Google Scholar
Wolf S, McMahon DP, Lim KS, Pull CD, Clark SJ, Paxton RJ et al (2014) So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honey bees. PLoS One 9:e103989. https://doi.org/10.1371/journal.pone.0103989
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoo MS, Noh JH, Yoon BS, Reddy KE, Kweon CH, Jung SC, Kang SW (2012) Reverse transcription loop-mediated isothermal amplification for sensitive and rapid detection of Korean sacbrood virus. J Virol Methods 186:147–151. https://doi.org/10.1016/j.jviromet.2012.08.009
CAS
Article
PubMed
Google Scholar
Yoshiyama M, Kimura K (2011) Distribution of Nosema ceranae in the European honeybee, Apis mellifera in Japan. J Invertebr Pathol 106:263–267. https://doi.org/10.1016/j.jip.2010.10.010
CAS
Article
PubMed
Google Scholar