Comparative analysis of monozoic fish tapeworms Caryophyllaeus laticeps (Pallas, 1781) and recently described Caryophyllaeus chondrostomi Barčák, Oros, Hanzelová, Scholz, 2017, using microsatellite markers

Abstract

The monozoic tapeworm Caryophyllaeus laticeps has been characterized by five markedly different morphotypes largely corresponding to different fish hosts. Recently, the most distinct morphotype 4 from the common nase Chondrostoma nasus was studied in more details resulting in description of a new species Caryophyllaeus chondrostomi. The molecular study based on mitochondrial cox1 and ribosomal lsrDNA did not reveal any interspecific differences between C. laticeps and C. chondrostomi and did not provide any molecular support for recognition of these two species. In the current study, six polymorphic microsatellite markers were applied in order to detect molecular differences between the two species and to provide molecular evidence of validity of C. chondrostomi. While all six microsatellite loci were amplified in different geographic populations of C. laticeps, only two of them provided the amplification product in C. chondrostomi. Results on the Bayesian analysis assigned C. chondrostomi and all geographic populations of C. laticeps to distinct clusters. Neither any close relationships among C. laticeps populations nor specific position of C. chondrostomi were revealed. Contrary, the results of the principal coordinate analysis revealed striking genetic separation of C. chondrostomi with no overlaps with any of the C. laticeps population or morphotype. Caryophyllaeus chondrostomi very probably underwent morphological divergence as a result of ongoing speciation, but this process has not yet been accompanied by sufficient genetic divergence. In this particular case, microsatellites were proved to be better molecular discriminative markers than rDNA and mtDNA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ash A, Scholz T, de Chambrier A, Brabec J, Oros M, Kar PK, Chavan SP, Mariaux J (2012) Revision of Gangesia (Cestoda: Proteocephalidea) in the Indomalayan region: morphology, molecules and surface ultrastructure. PLoS One 7(10):e46421. https://doi.org/10.1371/journal.pone.0046421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Barčák D, Oros M, Hanzelová V, Scholz T (2017) A synoptic review of Caryophyllaeus Gmelin, 1790 (Cestoda: Caryophyllidea), parasites of cyprinid fishes. Folia Parasitol 64:027. https://doi.org/10.14411/fp.2017.027

    Article  Google Scholar 

  3. Bazsalovicsová E, Králová-Hromadová I, Štefka J, Scholz T, Hanzelová V, Vávrová S, Szemes T, Kirk R (2011) Population study of Atractolytocestus huronensis (Cestoda: Caryophyllidea), an invasive parasite of common carp introduced to Europe: mitochondrial cox1 haplotypes and intragenomic ribosomal ITS2 variants. Parasitol Res 109:125–131. https://doi.org/10.1007/s00436-010-2235-x

    Article  PubMed  Google Scholar 

  4. Bazsalovicsová E, Králová-Hromadová I, Štefka J, Scholz T (2012) Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis. Parasitol Res 110:1621–1629. https://doi.org/10.1007/s00436-011-2673-0

    Article  PubMed  Google Scholar 

  5. Bazsalovicsová E, Králová-Hromadová I, Brabec J, Hanzelová V, Oros M, Scholz T (2014) Conflict between morphology and molecular data: a case of the genus Caryophyllaeus (Cestoda: Caryophyllidea), monozoic tapeworms of cyprinid fishes. Folia Parasitol 61:347–354. https://doi.org/10.14411/fp.2014.035

    Article  Google Scholar 

  6. Brabec J, Kuchta R, Scholz T (2006) Paraphyly of the Pseudophyllidea (Platyhelminthes: Cestoda): circumscription of monophyletic clades based on phylogenetic analysis of ribosomal RNA. Int J Parasitol 36:1535–1541. https://doi.org/10.1016/j.ijpara.2006.08.003

    CAS  Article  PubMed  Google Scholar 

  7. Brabec J, Scholz T, Králová-Hromadová I, Bazsalovicsová E, Olson PD (2012) Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes). Int J Parasitol 42:259–267. https://doi.org/10.1016/j.ijpara.2012.01.005

    Article  PubMed  Google Scholar 

  8. Chybicki I, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113. https://doi.org/10.1093/jhered/esn088

    CAS  Article  PubMed  Google Scholar 

  9. Earl DA, VonHoldt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  11. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587. https://doi.org/10.3410/f.1015548.197423

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Gibson DI (2013) Fauna Europaea: Caryophyllidea, Caryophyllaeus laticeps. Fauna Europaea version 2(6):2 https://fauna-eu.org/

    Google Scholar 

  13. Hanzelová V, Oros M, Barčák D, Miklisová D, Kirin D, Scholz T (2015) Morphological polymorphism in tapeworms: redescription of Caryophyllaeus laticeps (Pallas, 1781) (Cestoda: Caryophyllidea) and characterisation of its morphotypes from different fish hosts. Syst Parasitol 90:177–190. https://doi.org/10.1007/s11230-014-9536-x

    Article  PubMed  Google Scholar 

  14. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor Appl Genet 86:927–934. https://doi.org/10.1007/BF00211043

    CAS  Article  PubMed  Google Scholar 

  15. Králová-Hromadová I, Štefka J, Špakulová M, Orosová M, Bombarová M, Hanzelová V, Bazsalovicsová E, Scholz T (2010) Intraindividual ITS1 and ITS2 ribosomal sequence variation linked with multiple rDNA loci: a case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. Int J Parasitol 40:175–181. https://doi.org/10.1016/j.ijpara.2009.07.002

    CAS  Article  PubMed  Google Scholar 

  16. Králová-Hromadová I, Bazsalovicsová E, Oros M, Scholz T (2012) Sequence structure and intragenomic variability of ribosomal ITS2 in monozoic tapeworms of the genus Khawia (Cestoda: Caryophyllidea), parasites of cyprinid fish. Parasitol Res 111:1621–1627. https://doi.org/10.1007/s00436-012-3001-z

    Article  PubMed  Google Scholar 

  17. Králová-Hromadová I, Bazsalovicsová E, Bokorová S, Hanzelová V (2013) Ribosomal ITS2 structure in Caryophyllaeus laticeps and Caryophyllaeus brachycollis (Cestoda: Caryophyllidea), parasites of cyprinid fish. Helminthologia 50:235–237. https://doi.org/10.2478/s11687-013-0135-1

    Article  Google Scholar 

  18. Králová-Hromadová I, Minárik G, Bazsalovicsová E, Mikulíček P, Oravcová A, Pálková L, Hanzelová V (2015) Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach. Parasitol Res 114:721–726. https://doi.org/10.1007/s00436-014-4239-4

    Article  PubMed  Google Scholar 

  19. Orlóci L (1978) Multivariate analysis in vegetation research. The Hague, Boston, Dr. W. Junk by Publishers. https://doi.org/10.1007/978-94-017-5608-2

  20. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  21. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Protasova EP, Kuperman BI, Roitman VA, Poddubnaya LG (1990) Caryophyllid tapeworms of the fauna of USSR. Nauka, Moscow, p 237 (In Russian)

    Google Scholar 

  24. Rousset F (2008) Genepop ‘007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  25. Schaeffner BC, Jirků M, Mahmoud ZN, Scholz T (2011) Revision of Wenyonia Woodland, 1923 (Cestoda: Caryophyllidea) from catfishes (Siluriformes) in Africa. Syst Parasitol 79:83–107. https://doi.org/10.1007/s11230-011-9290-2

    Article  PubMed  Google Scholar 

  26. Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion. Nat Rev Genet 5:63–69. https://doi.org/10.1038/nrg1249

    CAS  Article  PubMed  Google Scholar 

  27. Scholz T (1989) Amphilinida and Cestoda. Parasites of fish in Czechoslovakia. Academia, Praha, pp. 56

  28. Scholz T, Oros M (2017) Caryophyllidea. In: Caira JN, Jensen K (eds) Planetary biodiversity inventory (2008-2017): tapeworms from vertebrate bowels of the earth. University of Kansas, Natural History Museum, Special Publication No. 25, Lawrence, KS, USA, pp 47-64

  29. Scholz T, Brabec J, Králová-Hromadová I, Oros M, Bazsalovicsová E, Ermolenko A, Hanzelová V (2011) Revision of Khawia spp. (Cestoda: Caryophyllidea), parasites of cyprinid fish, including a key to their identification and molecular phylogeny. Folia Parasitol 58:197–223. https://doi.org/10.14411/fp.2011.020

    Article  Google Scholar 

  30. van Oosterhout C, Weetman D, Hutchinson WF (2004) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. https://doi.org/10.1111/j.1471-8286.2005.01082.x

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Vladimíra Hanzelová a Dr. Mikuláš Oros (Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia) and Prof. Tomáš Scholz (Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic) for providing parasitic material. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042) is greatly appreciated.

Funding

The work was financially supported by the Slovak Grant Agency VEGA no. 2/0134/17 and by the Slovak Research and Development Agency under contract APVV-0653-11.

Author information

Affiliations

Authors

Contributions

IKH coordinated and designed the work; EB, IKH and AO performed all molecular analyses; EB and IKH wrote the manuscript; LJ, PM and JŠ performed all statistical analyses, descriptive statistics, Fst statistics, Bayesian analysis and principal coordinate analysis and provided interpretation of statistical outputs; GM was responsible for fragment analysis and evaluation of microsatellite data. All authors have read and improved the final version of the manuscript.

Corresponding author

Correspondence to Ivica Králová-Hromadová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Federica Marcer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazsalovicsová, E., Králová-Hromadová, I., Juhásová, L. et al. Comparative analysis of monozoic fish tapeworms Caryophyllaeus laticeps (Pallas, 1781) and recently described Caryophyllaeus chondrostomi Barčák, Oros, Hanzelová, Scholz, 2017, using microsatellite markers. Parasitol Res 119, 3995–4004 (2020). https://doi.org/10.1007/s00436-020-06898-8

Download citation

Keywords

  • Cestoda
  • Caryophyllidea
  • Molecular taxonomy
  • Interspecific differences
  • Short tandem repeats