Larval parasitic copepods affect early life history traits of a temperate clingfish

Abstract

Larval copepods are frequent parasites that infest fish larvae along the Chilean coast. Because these parasites develop on fish during the early development, when their bodies are fragile and in a recent stage, they can affect the fishes’ early life history traits (ELHT). The goal of this study was to determine the effect of parasitic copepods on the ELHT of the larvae of the clingfish Gobiesox marmoratus (Teleostei: Gobiesocidae) using otolith microstructure analysis. Ichthyoplankton samples were collected during austral winter (July and August 2012), in the inner shelf waters off Valparaiso Bay, central Chile. A total of 95 non-parasitized larvae (NPL) and 95 parasitized (PL) with copepods were randomly selected for subsequent analyses. Parasitized larvae of G. marmoratus were larger than NPL. The right otolith tended to be larger than the left otolith in the fish larvae, but with a higher asymmetry in PL. The PL showed larger otoliths-at-size than the NPL, particularly in smaller larvae (< 8 mm of standard length, SL). Nonetheless, parasitized larvae larger than 8 mm SL showed the opposite trend that is smaller-at-size otoliths than NPL. The Gompertz models indicated that the asymptotic length of NPL doubled the length of PL; this suggests that parasitic copepods affect the maximum size attained by the PL. In conclusion, parasitic copepods negatively affect the ELHT of G. marmoratus larvae and the greater asymmetry can be attributed to parasitism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Brooker AJ, Shinn AP, Bron JE (2007) A review of the biology of the parasitic copepod Lernaeocera branchialis (L., 1767) (Copepoda: Pennellidae). Adv Parasitol 65:297–341. https://doi.org/10.1016/S0065-308X(07)65005-2

    Article  PubMed  Google Scholar 

  2. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583. https://doi.org/10.2307/3284227

    CAS  Article  PubMed  Google Scholar 

  3. Castillo-Hidalgo G, Plaza G, Díaz-Astudillo M, Landaeta MF (2018) Seasonal variations in early life traits of Sindoscopus australis (Blennioidei: Dactyloscopidae): hatching patterns, larval growth and bilateral asymmetry of otoliths. J Mar Biol Assoc UK 98:1477–1485. https://doi.org/10.1017/S0025315417000790

    Article  Google Scholar 

  4. Contreras JE, Landaeta MF, Plaza G, Ojeda FP, Bustos CA (2013) The contrasting hatching patterns and larval growth of two sympatric clingfishes inferred by otolith microstructure analysis. Mar Freshw Res 64:157–167. https://doi.org/10.1071/MF12232

    Article  Google Scholar 

  5. Coustau C, Renaud F, Delay B, Robbins I, Mathieu M (1991) Mechanisms involved in parasitic castration: in vitro effects of the trematode Prosorhynchus squamatus on the gametogénesis and the nutrient storage metabolism of the marine bivalve mollusc Mytilus edulis. Exp Parasitol 73(1):36–43

    CAS  Article  Google Scholar 

  6. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032

    Article  Google Scholar 

  7. Díaz-Gil C, Palmer M, Catalán IA, Alós J, Fuiman LA, García E, Gil MM, Grau A, Kang A, Maneja RH, Mohan JA, Morro B, Schaffler JJ, Buttay L, Riera-Batle I, Tolosa B, Morales-Nin B (2015) Otolith fluctuating asymmetry: a misconception of its biological relevance? ICES J Mar Sci 72:2079–2089. https://doi.org/10.1093/icesjms/fsv067

    Article  Google Scholar 

  8. Eichner C, Hamre LA, Nilsen F (2015) Instar growth and molt increments in Lepeophtheirus salmonis (Copepoda: Caligidae) chalimus larvae. Parasitol Int 64(1):86–96. https://doi.org/10.1016/j.parint.2014.10.006

    Article  PubMed  Google Scholar 

  9. Faria AM, Ojanguren AF, Fuiman LA, Goncalves EJ (2009) Ontogeny of critical swimming speed of wild-caught and laboratory-reared red drum Sciaenops ocellatus larvae. Mar Ecol Prog Ser 384:221–230. https://doi.org/10.3354/meps08018

    Article  Google Scholar 

  10. Felley SM, Vecchione M, Hare S (1987) Incidence of ectoparasitic copepods on ichthyoplankton. Copeia 1987:778–782. https://doi.org/10.2307/1445673

    Article  Google Scholar 

  11. Grano-Maldonado M, Rodríguez-Santiago M, García-Vargas F, Nieves-Soto M, Soares F (2018) An emerging infection caused by Gyrodactylus cichlidarum Paperna, 1968 (Monogenea: Gyrodactylidae) associated with massive mortality on farmed tilapia Oreochromis niloticus (L.) on the Mexican Pacific coast. Lat Am J Aquat Res 46(5):961–968. https://doi.org/10.3856/vol46-issue5-fulltext-9

    Article  Google Scholar 

  12. Heath M, Nicoll N (1991) Infection of larval herring by helminth parasites in the North Sea and the effect on feeding incidence. Cont Shelf Res 11(2):1477–1489. https://doi.org/10.1016/0278-4343(91)90022-X

    Article  Google Scholar 

  13. Jahnsen-Guzmán N, Bernal-Durán V, Landaeta MF (2018) Parasitic copepos affect morphospace and diet of larvae of a temperate reef fish. J Fish Biol 92:330–346. https://doi.org/10.1111/jfb.13495

    Article  PubMed  Google Scholar 

  14. Jones CM, Grutter AS (2008) Reef-based micropredators reduce the growth of post-settlement damselfish in captivity. Coral Reefs 27:677–684. https://doi.org/10.1007/s00338-008-0383-6

    Article  Google Scholar 

  15. Landaeta MF, Zavala-Muñoz F, Palacios-Fuentes P, Bustos CA, Alvarado-Niño M, Letelier J, Cáceres MA, Muñoz G (2015) Spatial and temporal variations of coastal fish larvae, ectoparasites and oceanographic conditions off Central Chile. Rev Biol Mar Oceanogr 50(3):563–574. https://doi.org/10.4067/s0718-19572015000400013

    Article  Google Scholar 

  16. Landaeta MF, Bernal-Durán V, Castillo MI, Díaz-Astudillo M, Fernández-General B, Núñez-Acuña P (2019) Nearshore environmental conditions influence larval growth and shape changes for a temperate rocky reef fish. Hydrobiologia 839:159–176. https://doi.org/10.1007/s10750-019-04004-3

    Article  Google Scholar 

  17. Loot G, Poulet N, Reyjol Y, Blanchet S, Lek S (2004) The effects of the ectoparasite Tracheliastes polycolpus (Copepoda: Lernaeopodidae) on the fins of rostrum dace (Leuciscus leuciscus burdigalensis). Parasitol Res 94:16–23. https://doi.org/10.1007/s00436-004-1166-9

    Article  PubMed  Google Scholar 

  18. Mansur L, Catalán D, Plaza G, Landaeta MF, Ojeda FP (2013) Validations of the daily periodicity of increment deposition in rocky intertidal fish otoliths of the South-Eastern Pacific Ocean. Rev Biol Mar Oceanogr 48(3):629–633. https://doi.org/10.4067/s0718-19572013000300019

    Article  Google Scholar 

  19. Mansur L, Plaza G, Landaeta MF, Ojeda FP (2014) Planktonic duration in fourteen species of intertidal rocky fishes from the South-Eastern Pacific Ocean. Mar Freshw Res 65:901–909. https://doi.org/10.1071/MF13064

    Article  Google Scholar 

  20. Muñoz G, Landaeta MF, Palacios-Fuentes P, López Z, González MT (2015a) Parasite richness in fish larvae from the nearshore waters of central and northern Chile. Folia Parasitol 62:029. https://doi.org/10.14411/fp.2015.029

    CAS  Article  Google Scholar 

  21. Muñoz G, Landaeta MF, Palacios-Fuentes P, George-Nascimento M (2015b) Parasites of fish larvae: do they follow metabolic energetic laws? Parasitol Res 114:3977–3987. https://doi.org/10.1007/s00436-015-4625-6

    Article  PubMed  Google Scholar 

  22. Novak M, Abdoli A, Pont D, Sagnes P (2003) Otolith asymmetry as a proxy of thermal stress in cold water fish: do observations on natural populations of Cottus gobio meet, experimental results? Cybium 37(4):281–284. https://doi.org/10.26028/cybium/2013-374-007

    Article  Google Scholar 

  23. Palacios-Fuentes P, Landaeta MF, Muñoz G, Plaza G, Ojeda FP (2012) The effect of a parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts. Parasitol Res 11(4):1661–1671. https://doi.org/10.1007/s00436-012-3005-8

    Article  Google Scholar 

  24. Palacios-Fuentes P, Landaeta MF, González MT, Plaza G, Ojeda FP, Muñoz G (2015) Is ectoparasite burden related to host density? Evidence from nearshore fish larvae off the coast of Central Chile. Aquat Ecol 49:91–98. https://doi.org/10.1007/s10452-015-9507-6

    Article  Google Scholar 

  25. Palmer AR, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Developmental instability: causes and consequences. Oxford University Press, New York, Edited by M Polak, pp 279–319

    Google Scholar 

  26. Pérez R (1981) Desarrollo embrionario y larval de los pejesapos Sicyases sanguineus y Gobiesox marmoratus en la Bahía de Valparaíso, Chile, con notas sobre su reproducción (Gobiesocidae: Pisces). Investig Mar 9(1–2):1–24

    Google Scholar 

  27. Schmidt GD, Roberts LS (1977) Foundations of parasitology. The CV Mosby Company, Missouri, USA, 604 pp

    Google Scholar 

  28. Strathmann RR, Huges TP, Kuris AM, Lindeman KC, Morgan SG, Pandolfi JM, Warner RR (2002) Evolution of local recruitment and its consequences for marine populations. Bull Mar Sci 70(1):377–396

    Google Scholar 

  29. Uribe C, Folch H, Enríquez R, Morán G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56(10):486–503

    CAS  Article  Google Scholar 

  30. Vargas-Chacoff L, Muñoz JLP, Saravia J, Oyarzún R, Pontigo JP, González MP, Mardones O, Hawes C, Pino J, Wadsworth S, Morera FJ (2019) Neuroendocrine stress response in Atlantic salmon (Salmo salar) and Coho salmon (Oncorynchus kisutch) during sea lice infestation. Aquaqulture 505:329–340

    Article  Google Scholar 

  31. Von Herbing IH (2005) Effects of temperature on larval fish swimming performance: the importance of physics to physiology. J Fish Biol 61(4):865–876. https://doi.org/10.1006/jfbi.2002.2118

    Article  Google Scholar 

  32. Woo PTK (1995) Protozoan and metazoan infections. Fish diseases and disorders, 2nd. edn. Oxfordshire, CAB International, 791 pp. isbn:978-0-85199-015-6

Download references

Code availability

No applicable.

Funding

This study was financially supported by the Comisión Nacional de Investigación Científica y Tecnológica, Grant Fondecyt 1120868, adjudicated to GM, MFL and MT González.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriela Muñoz.

Ethics declarations

Acording to bioethical protocols indicated by Universidad de Valparaíso.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed by the authors as stated in the bioethics instructions given by The Universidad de Valparaiso (Chile).

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Stephen A. Bullard

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Landaeta, M.F., Díaz-Richter, C. & Muñoz, G. Larval parasitic copepods affect early life history traits of a temperate clingfish. Parasitol Res 119, 3977–3985 (2020). https://doi.org/10.1007/s00436-020-06854-6

Download citation

Keywords

  • Parasitic copepod
  • Somatic growth
  • Otoliths
  • Clingfish
  • Fish larvae