Skip to main content

Advertisement

Log in

Granulomas in parasitic diseases: the good and the bad

  • Immunology and Host-Parasite Interactions - Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Parasitic diseases affect more than one billion people worldwide, and most of them are chronic conditions in which the treatment and prevention are difficult. The appearance of granulomas, defined as organized and compact structures of macrophages and other immune cells, during various parasitic diseases is frequent, since these structures will only form when individual immune cells do not control the invading agent. Th2-typering various parasitic diseases are frequent, since these structures will only form when individual immune cells do not control the invading agent. The characterization of granulomas in different parasitic diseases, as well as recent findings in this field, is discussed in this review, in order to understand the significance of the granuloma and its modulation in the host–parasite interaction and in the immune, pathological, and parasitological aspects of this interaction. The parasitic granulomatous diseases granulomatous amebic encephalitis, toxoplasmosis, leishmaniasis, neurocysticercosis, and schistosomiasis mansoni are discussed as well as the mechanistic and dynamical aspects of the infectious granulomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abath FGC, Morais CNL, Montenegro CE, Wynn TA, Montenegro SM (2006) Immunopathogenic mechanisms in schistosomiasis: what can be learnt from human studies? Trends Parasitol 22:85–91

    Article  CAS  PubMed  Google Scholar 

  • Abdulla MC, Jemshad A (2017) Bone marrow granuloma due to toxoplasmosis presenting as isolated thrombocytopenia in na immunocompetent patient. Egypt J Haematol 42:78–79

    Article  Google Scholar 

  • Abdulla MH, Lim KC, McKerrow JH, James H, Caffrey CR (2011) Proteomic identification of IPSE/alpha-1 as a major hepatotoxin secreted by Schistosoma mansoni eggs. PLoS Negl Trop Dis 5:e1368–e1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adalid-Peralta L, Arce-Sillas A, Fragoso G, Cárdenas G, Rosetti M, Casanova-Hernández D, Rangel-Escareno C, Uribe-Figueroa L, Fleury A, Sciutto E (2013) Cysticerci drive dendritic cells to promote in vitro and in vivo Tregs differentiation. Clin Dev Immunol 2013:981468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams DO (1976) The granulomatous inflammatory response. Am J Pathol 84:164–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida RP, Barral-Netto M, Jesus AMR, Freitas LAR, Carvalho EM, Barral A (1996) Biological behavior of Leishmania amazonensis isolated from humans with cutaneous, mucosal or visceral leishmaniasis in Balb/c mice. Am J Trop Med Htg 54:178–184

    Article  CAS  Google Scholar 

  • Alvarez JI, Londoño DP, Alvarez AL, Trujillo J, Jamarillo MM, Restrepo BI (2002) Granuloma formation and parasite disintegration in porcine cysticercosis: comparison with human neurocysticercosis. J Comp Pathol 127:186–193

    Article  CAS  PubMed  Google Scholar 

  • Amaral KB, Silva TP, Dias FF, Malta KK, Rosa FM, Costa-Neto SF, Gentile R, Melo RCN (2017) Histological assessment of granulomas in natural and experimental Schistosoma mansoni infections using whole slide imaging. PLoS One 12:e0184696–e0184715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson CF, Mendez S, Sacks DL (2005) Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol 174:2934–2941

    Article  CAS  PubMed  Google Scholar 

  • Andrade ZA (1987) Pathology of human schistosomiasis. Mem Inst Oswaldo Cruz 82:17–23

    Article  PubMed  Google Scholar 

  • Andrade ZA (2009) Schistosomiasis and liver fibrosis. Parasite Immunol 31:656–663

    Article  CAS  PubMed  Google Scholar 

  • Aoun J, Habib R, Charaffeddine K, Taraif S, Loya A, Khalifeh I (2014) Caseating granulomas in cutaneous leishmaniasis. PLoS Negl Trop Dis 8:e325

    Article  Google Scholar 

  • Aráujo AP, Frezza TF, Alegretti SM, Giorgio S (2010) Hypoxia, hypoxia-inducible factor 1a and vascular endothelial growth factor in a murine model of Schistosoma mansoni infection. Exp Mol Pathol 89:327–333

    Article  PubMed  CAS  Google Scholar 

  • Arechavaleta F, Molinari JL, Tato P (1998) A Taenia solium metacestode factor nonspecifically inhibits cytokine production. Parasitol Res 84:117–122

    Article  CAS  PubMed  Google Scholar 

  • Arruda MSP, Nogueira MES, Bordon AP (2002) Histological evaluation of the lesion induced by inoculation of Leishmania mexicana in the cheek pouch of the hamster. Ver Soc Bras Med Trop 35:293–297

    Article  Google Scholar 

  • Baig AM (2015) Pathogenesis of amoebic encephalitis: are the amoebae being credited to an ‘inside job’ done by the host immune response? Acta Trop 148:72–76

    Article  PubMed  Google Scholar 

  • Beattie L, Peltan A, Maroof A (2010) Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8+ T Cells. PLoS Pathog 6:e1000805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belfort RN, Rasmussen S, Kherani A, Lodha N, Williams J, Fernandes BF, Burnier MN Jr (2010) Bilateral progressive necrotizing retinochoroiditis in an immunocompromised patient: histopathological diagnosis. Acta Ophthalmol 88:614–615

    Article  PubMed  Google Scholar 

  • Bertoli F, Espino M, Arosemena JR, Fishback JL, Frenkel JK (1995) A spectrum in the pathology of toxoplasmosis in patients with acquired immunodeficiency syndrome. Arch Pathol Lab Med 119:214–224

    CAS  PubMed  Google Scholar 

  • Betson M, Sousa-Figueiredo JC, Rowell C, Kabatereine N, Stothard JR (2010) Intestinal schistosomiasis in mothers and young children in Uganda: investigation of field-applicable markers of bowel morbidity. Am J Trop Med Hyg 83:1048–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdan C, Donhauser N, Döring R, Rollinghoff M, Diefenbach A, Ritig MG (2000) Fibroblasts as host cells in latent leishmaniosis. J Exp Med 191:2121–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boros LD (1986) Experimental granulomatosis. Clin Dermatol 4:10–12

    Article  CAS  PubMed  Google Scholar 

  • Burke ML, Jones MK, Gobert GN (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol 31:163–176

    Article  CAS  PubMed  Google Scholar 

  • Burza S, Croft SL, Boelaert M (2019) Leishmaniasis. Lancet 393:951–970

    Article  Google Scholar 

  • Cáceres-Dittmar G, Tapia FJ, Sanchez MA, Yamamura M, Uyemura K, Modlin RL, Bloom BR, Convit J (1993) Determination of the cytokine profile in American cutaneous leishmaniasis using the polymerase chain reaction. Clin Exp Immunol 91:500–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao J, Liu WJ, Xu XY, Zou XP (2010) Endoscopic findings and clinicopathologic characteristics of colonic schistosomiasis: a report of 46 cases. World J Gastroenterol 16:723–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpio A, Fleury A, Romo ML, Abraham R (2018) Neurocysticercosis: the good, the bad, and the missing. Expert Ver Neurother 18:289–301

    Article  CAS  Google Scholar 

  • Chen L, Christian DA, Kochanowsky JA, Phan AT, Clark JT, Wang S, Berry C, Oh J, Chen X, Roos DS, Beiting DP, Koshy AA, Hunter CA (2020) The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J Exp Med 217:e20181757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chensue SW (2013) Chemokines in innate and adaptative granuloma formation. Front Immunol 4:43. Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN (2014) Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol 30:141–150

    Google Scholar 

  • Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN (2014) Cellular and chemokine-mediated regulation in schistosome-induce hepatic pathology. Trends Parasitol 30:141–150

  • Colley DG, Bustinduy AL, Secor WE, King C (2014) Human schistosomiasis. Lancet 383:2253–2264

    Article  PubMed  PubMed Central  Google Scholar 

  • Commodaro AG, Belfort RN, Rizzo LV, Muccioli C, Silveira C, Burnier MM Jr, Belfort R Jr (2009) Ocular toxoplasmosis–an update and review of the literature. Mem Inst Oswaldo Cruz 104:345–350

    Article  PubMed  Google Scholar 

  • Corrêa G, Lindenberg CA, Moreira-Souza ACA, Savio LEB, Takiya CM, Marques-da-Silva C, Vommaro RC, Coutinho-Silva R (2017) Inflammatory early events associated to the role of P2X7 receptor in acute murine. Immunobiology 222:676–683

    Article  PubMed  CAS  Google Scholar 

  • Corte-Real S, Santos CB, Meirelles MN (1995) Differential expression of the plasma membrane Mg2+ ATPase and Ca2+ ATPase activity during adhesion and interiorization of Leishmania amazonensis in fibroblasts in vitro. J Submicrosc Cytol Pathol 27:359–366

    CAS  PubMed  Google Scholar 

  • Costain AH, MacDonald AS, Smits HH (2018) Schistosome egg migration: mechanisms, pathogenesis and host immune responses. Front Immunol 9:3042–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotterell SEJ, Engwerda CR, Kaye PM (1999) Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. Eur J Immunol 29:203–214

    Article  CAS  PubMed  Google Scholar 

  • De Cook KM (1986) Hepatosplenic schistosomiasis: a clinical review. Gut 27:734–745

    Article  Google Scholar 

  • De Jesus AR, Silva A, Santana LB, Magalhães A, Jesus AM, Almeida RP, Rêgo MAV, Burattini MN, Pearce EJ, Carvalho EM (2002) Clinical and immunologic evaluation of 31 patients with acute schistosomiasis mansoni. J Infect Dis 185:98–105

    Article  PubMed  Google Scholar 

  • De Lima DCV, Santos AS, Da Silva LTR, Melo RPB, Silva AG, Pinheiro JW Jr, Mota RA (2016) Occurrence of Toxoplasma gondii in domestic rabbits of Northeastern Brazil. Acta Parasitol 61:500–507

    PubMed  Google Scholar 

  • Del Brutto OH (2014) Neurocysticercosis. Neurohospitalist 4:205–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Denkers EY, Gazzinelli RT (1998) Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Ver 4:569–588

    Article  Google Scholar 

  • Díaz A, Sagasti C, Casaravilla C (2017) Granulomatous responses in larval taeniid infectious. Parasite Immunol 40(5):e12523

    Article  CAS  Google Scholar 

  • Dubey JP (2008) The history of Toxoplasma gondii-the first 100 years. J Eukaryot Microbiol 55:467–475

    Article  PubMed  Google Scholar 

  • Duggal SD, Rongpharpi SR, Duggal AS, Kumas A, Biswal I (2017) Role of Acanthamoeba in granulomatous encephalitis: a review. J Infect Dis Immune Ther 1:1. https://doi.org/10.4172/JIDITH.1000103 Corpus ID: 56064175

    Article  Google Scholar 

  • El-shoura SM, Tallab T, Bahamdan K (1996) Human cutaneous leishmaniasis: ultrastructural interactions between the inflammatory cells and Leishman bodies in the skin lesions. Parasite J 3:229–236

    Article  CAS  Google Scholar 

  • Escobar A (1983) The pathology of neurocysticercosis. In: Palacios E, Rodriguez-Carbajal, Taveras J, editors. Cysticercosis of the central nervous system. Springfield 27-54.

  • Falangola MF, Reichler BS, Petito CK (1994) Histopathology of cerebral toxoplasmosis in human immunodeficiency virus infection: a comparison between patients with early-onset and late-onset acquired immunodeficiency syndrome. Hum Pathol 25:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Falzone C, Baroni M, De Lorenzi D, Mandara MT (2008) Toxoplasma gondii brain granuloma in a cat: diagnosis using cytology from na intraoperative sample and sequential magnetic resonance imaging. J Small Anim Pract 49:95–99

    Article  CAS  PubMed  Google Scholar 

  • Filipe-Santos O, Pescher P, Breart B, Lippuner C, Aebischer T, Glaichenhaus N, Späth GF, Bousso P (2009) A dynamic map of antigen recognition by CD4 T Cells at the site of Leishmania major infection. Cell Host Microbe 6:23–33

    Article  CAS  PubMed  Google Scholar 

  • Fleury A, Cardenas G, Adalid-Peralta L, Fragoso G, Sciutto E (2016) Immunopathology in Taenia solium neurocysticercosis. Parasite Immunol 38:147–157

    Article  CAS  PubMed  Google Scholar 

  • García HH, Gonzalez A, Evans CAW, Gilman RH (2003) Taenia solium cysticercosis. Lancet 362:547–556

    Article  PubMed  PubMed Central  Google Scholar 

  • García HH, Gonzalez AE, Rodriguez S, Tsang VCW, Pretell EJ, Gozales I, Gilman RH, Cysticercosis Working Group in Peru (2010) Neurocysticercosis. Unraveling the nature of the single cysticercal granuloma. Neurology 75:654–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García HH, O’Neal SE, Noh J, Handali S, Cysticercosis Working Group in Peru (2018) Laboratory diagnosis of neurocysticercosis (Taenia solium). J Clin Microbiol 56:e00424–e00418

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghoname SI, Mohamed AH, El-Dafrawy SM (2017) Immune response of stimulated Biomphalaria alexandrina snails with Schistosoma mansoni infection. J Egypt Soc Parasitol 47:219–225

    PubMed  Google Scholar 

  • Giorgio S, Linares E, Ischiropoulos H, Von Zuben FJ, Yamada A, Augusto O (1998) In vivo formation of electron paramagnetic resonance-detectable nitric oxide and nitrotyrosine is not impaired during murine leishmaniasis. Infect Immun 66:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto H, Prianti MG (2009) Immunoactivation and immunopathogeny during active visceral leishmaniasis. Rev Inst Med Trop S Paulo 5:241–246

    Article  Google Scholar 

  • Guarner J (2012) Detection of microorganisms in granulomas that have been formalin-fixed: review of the literature regarding use of molecular methods. Scientifica 2012: -16

  • Guarner J, Bartlett J, Shieh W-J, Paddock CD, Visvesvara GS, Zaki SR (2007) Histopathological spectrum and immunohistochemical diagnosis of amebic meningoencephalitis. Mod Pathol 20:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Guiraldo E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis granuloma–the critical battlefield in host immunity and disease. Front Immunol 4:98. https://doi.org/10.3389/fimmu.2013.00098

    Article  CAS  Google Scholar 

  • Hagen J, Young ND, Every AL, Pagel CN, Schnoeller C, Scheerlinck JP, Gasser RB, Kalinna BH (2014) Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat Commun 5:5375

    Article  PubMed  Google Scholar 

  • Hams E, Aviello G, Fallon PG (2013) The Schistosoma granuloma: friend or foe? Front Immunol 4:1–7

    Article  CAS  Google Scholar 

  • Harrison JL, Ferreira GA, Raborn ES, Lafrenaye D, Marciano-Cabral F, Cabral GA (2010) Acanthamoeba culbertsoni elicits soluble factors that exert anti-microglial cell activity. Infect Immun 78:4001–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegade VS, Armstrong MJ, Smithson JAJ (2012) Hepatic schistosomiasis. QJMed 105:87

    Article  CAS  Google Scholar 

  • Helming L, Gordon S (2008) The molecular basis of macrophage fusion. Immunobiology 212:85–93

    Article  CAS  Google Scholar 

  • Hermida MD, Melo CVB, Lima IDS, Oliveira GGS, Dos-Santos WLC (2018) Histological disorganization of spleen compartments and severe leishmaniasis. Front Cell Infect Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Heyde S, Philipsen L, Formaglio P, Fu Y, Baars I, Höbbel G, Kleinholz CL, Seiß EA, Stettin J, Gintschel P, Dudeck A, Bousso P, Schraven B, Müller AJ (2018) CD11c-expressing Ly6C+CCR2+ monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission. PLoS Pathog 14:e1007374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito T, Connett JM, Kunkel SL, Matsukawa A (2013) The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 4:1–8

    Article  CAS  Google Scholar 

  • James DG (2000) A clinicopathological classification of granulomatous disorders. J Postgrad Med 76:457–465

    Article  CAS  Google Scholar 

  • Jankovic D, Kullberg MC, Dombrowicz D, Barbieri S, Caspar P, Wynn TA, Paul WE, Cheever AW, Kinet JP, Sher A (1997) Fc epsilonRI-deficient mice infected with Schistosoma mansoni mount normal Th2-type responses while displaying enhanced liver pathology. J Immunol 159:1868–1875

    CAS  PubMed  Google Scholar 

  • Janitschke K, Martínez AJ, Visvesvara GS, Schuster F (1996) Animal model Balamuthia mandrillaris CNS infection: contrast and comparison in immunodeficient and immunocompetent mice: a murine model of “Granulomatous” amebic encephalitis. J Neuropathol Exp Neurol 55:815–821

    Article  CAS  PubMed  Google Scholar 

  • Kalra SK, Sharma P, Shyam K, Tejan N, Ghoshal U (2020) Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 208:107788

    Article  PubMed  Google Scholar 

  • Kaye P, Scott P (2011) Leishmaniasis: complexity at the host–pathogen interface. Nat Rev Microbiol 9:604–615

    Article  CAS  PubMed  Google Scholar 

  • Kaye P, Svensson M, Ato M, Maroof A, Polley R, Stager S, Zubairi S, Engwerda CR (2004) The immunopathology of experimental visceral leishmaniasis. Immunol Rev 201:239–253

    Article  CAS  PubMed  Google Scholar 

  • Kaye PM, Beattie L (2016) Lessons from other diseases: granulomatous inflammation in leishmaniasis. Semin Imunopathol 38:249–260

    Article  Google Scholar 

  • Khan NA (2003) Pathogenesis of Acanthamoeba infections. Microb Pathog 34:277–285

    Article  PubMed  CAS  Google Scholar 

  • Kinard BE, Magliocca KR, Guarner J, Delille CA, Roser SM (2016) Longstanding suppurative granulomatous inflammation of the infratemporal fossa. Oral Maxillofac Surg Cases 2:14–17

    Article  Google Scholar 

  • Klippe JH, Kirsten D, Andrée C (2004) Rudolf Virchow (1821-1902) and the origin of the term “granuloma”. Pneumonologie 58:449–454

    Article  CAS  Google Scholar 

  • Kubasta M, Dusek J, Kubastová B, Kodousek R (1965) Needle biopsy of the liver in schistosomiasis mansoni. Comparison of examination of fresh tissue and sections. Gastroenterology 49:280–286

    Article  CAS  PubMed  Google Scholar 

  • Kurban AK, Malak JA, Farah FS, Chaglassian HT (1996) Histopathology of cutaneous leishmaniasis. Arch Dermatol 93:396–401

    Article  Google Scholar 

  • Lambertucci JR (2010) Acute schistosomiasis mansoni: revisited and reconsidered. Mem Inst Oswaldo Cruz 105:422–435

    Article  PubMed  Google Scholar 

  • Lambertucci JR, Serufo JC, Gerspacher-Lara R, Rayes AA, Teixeira R, Nobre V, Antunes CM (2000) Schistosoma mansoni: assessment of morbidity before and after control. Acta Trop 77:101–108

    Article  CAS  PubMed  Google Scholar 

  • Landa A, Navarro L, Ochoa-Sánchez A, Jiménez L (2019) Taenia solium and Taenia crassiceps: miRNomes of the larvae and effects of miR-10-5p and let-7-5p on murine peritoneal macrophages. Biosci Rep 39:BSR20190152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Charmoy M, Romano A, Paun A, Chaves MM, Cope FO, Ralph DA, Sacks DL (2018) Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J Exp Med 215:357–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima IS, Silva JS, Almeida VA, Leal FG, Souza PA, Larageira DF, Moura-Neto JP, Fraga DBM, Freitas LAR, Dos-Santos WLC (2014) Severe clinical presentation of visceral leishmaniasis in naturally infected dogs with disruption of the splenic white pulp. PLoS One 9:e87742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lima IS, Solcá MS, Tafuri WL, Freitas LAR, Dos-Santos WLC (2019) Assessment of histological liver alterations in dogs naturally infected with Leishmania infantum. Parasit Vectors 12:487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin PL, Maiello P, Gideon P, Coleman T, Cadena AM, Rodgers MA, Gregg R, O’Malley M, Tomko J, Fillmore D, Frye J, Rutledge T, DiFazio RM, Janssen C, Klein E, Andersen PL, Fortune SM, Flynn JL (2016) PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathog 12:e1005739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Londoño DP, Alvarez JI, Trujillo J, Jaramillo MM, Restrepo BI (2002) The inflammatory cell infiltrates in porcine cysticercosis: immunohistochemical analysis during various stages of infection. Vet Parasitol 109:249–259

    Article  PubMed  Google Scholar 

  • Lundy SK, Lukacs NW (2013) Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 4:1–17

    Article  CAS  Google Scholar 

  • Maia C, Campino L (2018) Biomarkers associated with Leishmania infantum exposure, infection, and disease in dogs. Front Cell Infect Microbiol 8:302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mansour L, el-Marhoumy SM, Eid MM, Gawish K (1993) A histopathological study of different clinical forms of cutaneous leishmaniasis. J Egypt Soc Parasitol 23:591–597

    CAS  PubMed  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariano M (1995) The experimental granuloma. A hypothesis to explain the persistence of the lesion. Rev Inst Med Trop São Paulo 37:161–176

    Article  CAS  PubMed  Google Scholar 

  • Martínez AJ (1982) Acanthamoebiasis and immunosuppression: case report. J Neuropathol Exp Neurol 45:548–557

    Article  Google Scholar 

  • McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N (2018) Schistosomiasis. Nat Rev Dis Primers 4(1):13. https://doi.org/10.1038/s41572-018-0013-8

    Article  PubMed  Google Scholar 

  • Meir M, Grosfeld T, Barkan D (2018) Establishment and validation of Galleria mellonella as a novel organism to study Mycobacterium abscessus infection, pathogenesis and treatment. Antimicrob Agents Chemother 62:02539–02547

    Article  Google Scholar 

  • Mendonça MG, Brito MEF, Rodrigues HEG, Bandeira V, Jardim ML, Abath FGC (2004) Persistence of Leishmania parasites in scars after clinical cure of American cutaneous leishmaniasis: is there a sterile cure? J Infect Dis 189:1018–1023

    Article  PubMed  Google Scholar 

  • Modica S, Miracco C, Cusi MG, Tordini G, Muzii VF, Iacoangeli F, Nocentini C, Ali IKM, Roy S, Cerase A, Zanelli G, De Luca A, Montagnani F (2018) Non-granulomatous cerebellar infection by Acanthamoeba spp. in an immunocompetent host. Infection 46(6):885–889

    Article  CAS  PubMed  Google Scholar 

  • Mkupasi EM, Sikasunge CS, Ngowi HA, Leifsson PS, Johansen MV (2013) Detection of cysteine protease in Taenia solium-induced brain granulomas in naturally infected pigs. Vet Parasitol 197:360–363

    Article  CAS  PubMed  Google Scholar 

  • Muzii VF, Iacoangeli F, Karin MAI NC, Roy S, Cerase A, Zanelli G, De Luca A, Montagnani F (2018) Non-granulomatous cerebellar infection by Acanthamoeba spp. in an immunocompetent host. Infection 46:885–889

    Article  PubMed  CAS  Google Scholar 

  • Mohamed ARES, Karawi MAA, Yasawy MI (1990) Schistosomal colonic disease. Gut 31:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari JL, Tato P, Reynoso AO, Cázares JM (1990) Depressive effect of a Taenia solium cysticercus factor on cultured human lymphocytes stimulated with phytohaemagglutinin. Ann Trop Med Parasitol 84:205–208

    Article  CAS  PubMed  Google Scholar 

  • Montoya JG, Liensenfeld O (2004) Toxoplasmosis. Lancet 363:1965–1976

    Article  CAS  PubMed  Google Scholar 

  • Moore JWJ, Moyo D, Beattie L, Andrews PS, Timmis J, Kaye PM (2013) Functional complexity of the Leishmania granuloma and the potential of in silico modeling. Front Immunol 4:1–7

    Article  CAS  Google Scholar 

  • Moyo D, Beattie L, Andrews PS (2018) Macrophage transactivation for chemokine production identified as a negative regulator of granulomatous inflammation using agent-based modeling. Front Immunol 9:637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller AJ, Filipe-Santos O, Eberl G, Aebischer T, Späth GF, Bousso P (2012) CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37:147–157

    Article  PubMed  CAS  Google Scholar 

  • Murray HW (2001) Tissue granuloma structure-function in experimental visceral leishmaniasis. Int J Exp Pathol 82:249–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray HW, Squires KE, Miralles CD, Stockle MY, Granger AM, Granelli-Piperno A, Bogdan C (1992) Acquired resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity. J Immunol 148:1858–1863

    CAS  PubMed  Google Scholar 

  • Nash TE, Pretell EJ, Lescano AG, Bustos JA, Gilman RH, Gonzalez E, Garcia HH, Cysticercosis Working Group (2018) Seizure activity in patients with calcified neurocysticercosis: a prospective cohort and nested case-control study. Lancet Neurol 7:1099–1105

    Article  Google Scholar 

  • Nathan C (2016) Macrophages’ choice: take it in or keep it out. Immunity 45:710–711

    Article  CAS  PubMed  Google Scholar 

  • Nieto A, Domínguez-Bernal G, Orden JA, Fuente RD, Madrid-Elena N, Carríon J (2011) Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Vet Res 42:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Págan AJ, Ramakrishnan L (2018) The formation and function of granulomas. Annu Rev Immunol 36:23–27

    Article  CAS  Google Scholar 

  • Pampiglione S, Manson-Bahr PEC, Giungi F, Giungi G, Parenti A, Trotti CG (1974) Studies on Mediterranean leishmaniasis. 2. Asymptomatic cases of visceral leishmaniasis. Trans R Soc Trop Med Hyg 68:447–453

    Article  CAS  PubMed  Google Scholar 

  • Park MK, Hoffmann KF, Cheever AW, Amichay D, Wynn TA, Farber JM (2001) Patterns of chemokine expression in models of Schistosoma mansoni inflammation and infection reveal relationships between type 1 and type 2 responses and chemokines in vivo. Infect Immun 69:6755–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce EJ (2005) Priming of the immune response by schistosome eggs. Parasite Immunol 27:265–270

    Article  CAS  PubMed  Google Scholar 

  • Perez MT, Bush LM (2007) Fatal amebic encephalitis caused by Balamuthia mandrillaris in an immunocompetent host. A clinicopathological review of pathogenic free-living amebae in human hosts. Case Report. Ann Diagn Pathol 11:440–447

    Article  PubMed  Google Scholar 

  • Pettit DAD, Williamson J, Cabral GA, Marciano-Cabral F (1996) In vitro destruction of nerve cell cultures by Acanthamoeba spp.: a transmission and scanning electron microscopy study. J Parasitol 82:769–777

    Article  CAS  PubMed  Google Scholar 

  • Pfohl JC, Dewey CW (2005) Intracranial Toxoplasma gondii granuloma in a cat. J Feline Med Surg 7:369–374

    Article  PubMed  Google Scholar 

  • Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceição-Silva F, Modlin RL (1993) Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest 91:1390–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisarski K (2019) The global burden of diseases of zoonotic parasitic diseases: top 5 contenders for priority consideration. Trop Med Infect Dis 4:44–52

    Article  PubMed Central  Google Scholar 

  • Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12:352–366

    Article  CAS  PubMed  Google Scholar 

  • Restrepo BI, Alvarez JI, Castaño JA, Arias LF, Restrepo M, Trujillo J, Colegial CH, Teale JM (2001) Brain granulomas in neurocysticercosis patients are associated with a Th1 and Th2 profile. Infect Immun 69:4554–4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley DS (1980) A histological classification of cutaneous leishmaniasis and its geographical expression. Trans R Soc Trop Med Hyg 74:515–521

    Article  CAS  PubMed  Google Scholar 

  • Ridley MJ, Ridley DS (1986) Monocyte recruitment, antigen degradation and localization in cutaneous leishmaniasis. Br J Exp Pathol 67:209–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Gangneaux F, Drogoul AS, Rostan O (2012) Invariant NKT cells drive hepatic cytokinic microenvironment favoring efficient granuloma formation and early control of Leishmania donovani infection. PLoS One 7:e33413

    Article  CAS  Google Scholar 

  • Robinson P, Garza A, Weinstock J, Serpa JA, Goodman JC, Eckols KT, Firogary B, Tweardy DJ (2012) Substance P causes seizures in neurocysticercosis. PLoS Pathog 8:e1002489–e1002499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J (2016) Regulation of immunity during visceral Leishmania infection. Parasit Vectors 9:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roque AL, Jansen AM (2014) Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl 3:251–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Saadatnia G, Golkar M (2002) A review on human toxoplasmosis. Scand J Infect Dis 44:805–814

    Article  Google Scholar 

  • Saeij JP, Boyle JP, Boothroyd JC (2005) Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol 21:476–481

    Article  PubMed  Google Scholar 

  • Safaei A, Motazedian MH, Vasei M (2002) Polymerase chain reaction for diagnosis of cutaneous leishmaniasis in histologically positive, suspicious and negative skin biopsies. Dermatol 205:18–24

    Article  CAS  Google Scholar 

  • Salguero FJ, Garcia-Jimenez L, Lima I, Seifert K (2018) Histopathological and immunohistochemical characterisation of hepatic granulomas in Leishmania donovani-infected BALB/c mice: a time course study. Parasit Vectors 11:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez MA, Diaz NL, Zerpa O, Negron E, Convit J, Tapia FJ (2004) Organ-specific immunity in canine visceral leishmaniasis: analysis of symptomatic and asymptomatic dogs naturally infected with Leishmania chagasi. Am J Trop Med Hyg 70:618–624

    Article  PubMed  Google Scholar 

  • Sant’Ana JAP, Lima WG, Oliveira MR, Simões LA, Michalick MSM, Melo MN, Tafuri WL, Tafuri WL (2007) Hepatic granulomas in canine visceral leishmaniasis and clinical status. Arq Bras Med Vet Zootec 59:1137–1144

    Article  Google Scholar 

  • Saunders BM, Cooper AM (2000) Restraining mycobacteria role of granulomas in mycobacterial infections. Immunol Cell Biol 78:334–341

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer M, Han SJ, Chtanova T, Dooren GG, Herzmark P, Chen Y, Roysam B, Striepen B, Robey EA (2009) Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J Immunol 182:6379–6393

    Article  CAS  PubMed  Google Scholar 

  • Schlüter D, Löhler J, Deckert M, Hof H, Schwendemann G (1991) Toxoplasma encephalitis of immunocompetent and nude mice: immunohistochemical characterisation of Toxoplasma antigen, infiltrates and major histocompatibility complex gene products. J Neuroimmunol 31:185–198

    Article  PubMed  Google Scholar 

  • Schlüter D, Barragan A (2019) Advances and challenges in understanding cerebral toxoplasmosis. Front Immunol 10:242–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz C, Fallon PG (2018) Schistosoma “eggs-iting” the host: granuloma formation and egg excretion. Front Immunol 9:2492–2507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seitzer U, Haas H, Gerdes J (2001) A human in vitro granuloma model for the investigation of multinucleated giant cell and granuloma formation. Histol Histopathol 16:645–653

    CAS  PubMed  Google Scholar 

  • Shah KK, Pritt BS, Alexander MP (2016) Histopathologic review of granulomatous inflammation. J Clin Tuberc Other Mycobact Dis 7:1–12

    Google Scholar 

  • Silveira FT, Lainson R, Corbett CEP (2004) Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil-a review. Mem Inst Oswaldo Cruz 99:239–2351

    Article  PubMed  Google Scholar 

  • Sing OP, Hasker E, Sacks D, Boelaert M, Sundar S (2014) Asymptomatic leishmania infection: a new challenge for Leishmania control. Clin Infect Dis 58:1424–1429

    Article  Google Scholar 

  • Souza-Lemos C, Campos SN, Teva A, Côrte-Real S, Fonseca EC, Porrozzi R, Grimaldi G Jr (2008) Dynamics of immune granuloma formation in a Leishmania braziliensis-induced self-limiting cutaneous infection in the primate Macaca mulatta. J Pathol 216:375–386

    Article  CAS  PubMed  Google Scholar 

  • Strickland GT (1994) Gastrointestinal manifestations of schistosomiasis. Gut 35:1334–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer JL, Marks LM, White AC Jr, Robinson P (2003) Epileptogenic activity of granulomas associated with murine cysticercosis. Exp Neurol 183:532–536

    Article  PubMed  Google Scholar 

  • Suzuki Y, Orellana MA, Wong S, Conley FK, Remington JS (1993) Susceptibility of chronic infection with Toxoplasma gondii does not correlate with susceptibility to acute infection in mice. Infect Immun 61:2284–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swe T, Baqui A, Naimg AT, Baqui T, Sherigar J, Mansour M (2016) Non-necrotizing colonic granuloma induced by schistosomiasis. J Community Hosp Intern Med Perspect 6:33114–33116

    Article  PubMed  Google Scholar 

  • Tato P, Castro AM, Soto R, Arechavaleta F, Molinari JL (1995) Suppression of murine lymphocyte proliferation induced by a small RNA purified from the Taenia solium metacestode. Parasitol Res 81:181–187

    CAS  PubMed  Google Scholar 

  • Tenor JL, Oehlers SH, Yang JL, Tobin DM, Prefect JR (2015) Live imaging of host-parasite interactions in a zebrafish infection model reveals cryptococcal determinants of virulence and central nervous system invasion. mBio 6:e01425–e01415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teva A, Porrozi R, Cupolillo E, Pirmez C, Oliveira-Neeto MP, Grimaldi G Jr (2003) Leishmania (Viannia) braziliensis-induced chronic granulomatous cutaneous lesions affecting the nasal mucosa in the Rhesus Monkey (Macaca Mulatta) model. Parasitology 127:437–447

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Rao R, Kumar GN (2018) An overview of suppurative granuloma. Indian J Dermatopathol Diagn Dermatol 5:19–26

    Article  Google Scholar 

  • Tuon FF, Fernandes RR, Pagliari DMIS, Amato VS (2010) The expression of TLR9 in human cutaneous leishmaniasis is associated with granuloma. Parasite Immunol 32:769–772

    Article  CAS  PubMed  Google Scholar 

  • Turk JL (1998) Encyclopedia of immunology. 2nd ed. Roitt & Delves, London, pp 1023–1026

    Book  Google Scholar 

  • Van den Bossche J, Laoui D, Naessens T, Smits HH, Hokke CH, Stijlemans B, Grooten J, Baetselier P, Ginderachter JAV (2015) E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo. Sci Rep 5:12599–12610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkataram M, Moosa M, Devi L (2001) Histopathological spectrum in cutaneous leishmaniasis: a study in Oman. Indian J Dermatol Venereol Leprol 67:294–298

    CAS  PubMed  Google Scholar 

  • Veress B, Abdalla RE, El Hassan AM (1983) Visceral spreading depletion of thymus-dependent regions and amyloidosis in mice and hamsters infected intradermally with Leishmania isolated from Sudanese cutaneous leishmaniasis. Br J Exp Pathol 64:505–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26

    Article  CAS  PubMed  Google Scholar 

  • Voieta I, Queiroz LC, Andrade LM, Silva LCS, Fontes VF, Barbosa A Jr, Resende V, Petroianu A, Andrade Z, Antunes CM, Lambertucci JR (2010) Imaging techniques and histology in the evaluation of liver fibrosis in hepatosplenic schistosomiasis mansoni in Brazil: a comparative study. Mem Inst Oswaldo Cruz 105:414–421

    Article  PubMed  Google Scholar 

  • Weerakoon KGAD, Gobert GN, Cai P, McManus DP (2015) Advances in the diagnosis of human schistosomiasis. Clin Microbiol Ver 28:939–967

    Article  CAS  Google Scholar 

  • White AC Jr (2000) Neurocysticercosis: updates on epidemiology, pathogenesis, diagnosis, and management. Annu Ver Med 51:187–206

    Article  CAS  Google Scholar 

  • Williams GT, Williams WJ (1983) Granulomatous inflammation-a review. J Clin Pathol 36:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ME, Montenegro S, Domingues AL (1994) Leucocytes of patients with Schistosoma mansoni respond with a Th2 pattern of cytokine production to mitogen or egg antigens but with a Th) pattern to worm antigens. J Infect Dis 170: 946-954.

  • Wilson JL, Mayr HK, Weichhart T (2019) Metabolic programming of macrophages: implications in the pathogenesis of granulomatous disease. Front Immunol 10:2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA (2007) Immunopathology of schistosomiasis. Immunol Cell Biol 85:148–154

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Ramam M (2018) Epithelioid cell granuloma. Indian J Dermatopathol Diagn Dermatol 5:7–18

    Article  Google Scholar 

  • Zumla A, James DG (1996) Granulomatous infections: etiology and classification. Clin Infect Dis 23:146–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the unknown referee for constructive review of the paper, Noili Demaman for English language editing, and Ana Carolina Andrade Vitor Kayano for artwork.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Giorgio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Ramaswamy Kalyanasundaram

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgio, S., Gallo-Francisco, P.H., Roque, G.A.S. et al. Granulomas in parasitic diseases: the good and the bad. Parasitol Res 119, 3165–3180 (2020). https://doi.org/10.1007/s00436-020-06841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06841-x

Keywords

Navigation