Skip to main content

Identification of tick-borne pathogens in ticks collected from wild animals in Turkey

Abstract

Many enzootic life cycles involving wild animals and non-nidicolous ixodids are still unknown. Therefore, the aim of this study was to report the identified tick species collected from seven different animal species (red deer, brown bear, gray wolf, Eurasian lynx, red fox, European hare, and Mediterranean spur-thighed tortoise) living in the wild in Turkey and to investigate the presence of a wide range of tick-borne microorganisms in the tick samples obtained from these animals. The collected ticks (n = 98) were identified as Dermacentor reticulatus, Haemaphysalis parva, Hyalomma aegyptium, Hyalomma excavatum, Hyalomma marginatum, Ixodes ricinus, and Rhipicephalus turanicus. All engorged ticks collected from the wild animals and unfed larvae (n = 30) obtained from a single Rh. turanicus female were also analyzed individually for tick-borne bacterial and protozoan agents via PCR-sequencing. The molecular analyses revealed the presence of Babesia sp. tavsan2, Theileria capreoli, four Hepatozoon spp. (Hep. ursi, Hep. canis, Hep. felis, and Hepatozoon sp.), Hemolivia mauritanica, and three SFG rickettsiae (Candidatus Rickettsia barbariae, Ca. R. goldwasserii, and Rickettsia hoogstraalii) in the collected ticks. This represents the first report of Th. capreoli, Hep. ursi, and Ca. R. barbariae in ticks from Turkey. The evolutionary relationships of microbes in the different host and tick species are also discussed. Multiple novel tick-host associations in the tick life cycle were also revealed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Akyüz M, Kirman R, Güven E (2019) Türkiye’de iki boz ayıda Hepatozoon ursi’nin ilk moleküler tanısı. In: 21st Congress of Parasitology. İzmir, Turkey, p 219 (in Turkish)

    Google Scholar 

  • Allen KE, Yabsley MJ, Johnson EM, Reichard MV, Panciera RJ, Ewing SA, Little SE (2011) Novel Hepatozoon in vertebrates from the Southern United States. J Parasitol 97:648–653

    PubMed  Article  Google Scholar 

  • André MR, Adania CH, Teixeira RHF, Vargas GH, Falcade M, Sousa L, Salles AR, Allegretti SM, Felippe PAN, Machado RZ (2010) Molecular detection of Hepatozoon spp. in Brazilian and exotic wild carnivores. Vet Parasitol 173:134–138

    PubMed  Article  Google Scholar 

  • Apanaskevich DA (2003) To diagnositics of Hyalomma (Hyalomma) aegyptium (Acari: Ixodidae). Parasitologiia 37:47–59 (in Russian)

    CAS  Google Scholar 

  • Apanaskevich D, Horak I (2005) The genus Hyalomma Koch, 1844. II. Taxonomic status of H. (Euhyalomma) anatolicum Koch, 1844 and H. (E.) excavatum Koch, 1844 (Acari, Ixodidae) with redescriptions of all stages. Acarina 13:181–197

    Google Scholar 

  • Apanaskevich DA, Horak IG (2008) The genus Hyalomma Koch, 1844: V. re-evaluation of the taxonomic rank of taxa comprising the H. (Euhyalomma) marginatum Koch complex of species (Acari: Ixodidae) with redescription of all parasitic stages and notes on biology. Int J Acarol 34:13–42

    Article  Google Scholar 

  • Aydin MF, Sevinc F, Sevinc M (2015) Molecular detection and characterization of Hepatozoon spp. in dogs from the central part of Turkey. Ticks Tick Borne Dis 6:388–392

    PubMed  Article  Google Scholar 

  • Baneth G, Sheiner A, Eyal O, Hahn S, Beaufils JP, Anug Y, Talmi-Frank D (2013) Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission. Parasit Vectors 6:102

    PubMed  PubMed Central  Article  Google Scholar 

  • Black WC, Piesman J (1994) Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci 91(21):10034–10038

  • Casati S, Sager H, Gern L, Piffaretti JC (2006) Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agric Environ Med 13:65–70

    CAS  PubMed  Google Scholar 

  • Darriba D, Posada D, Kozlov AM et al (2019) ModelTest-NG : a new and scalable tool for the selection of DNA and protein evolutionary models. bioRxiv msz 198:1–6

    Google Scholar 

  • de la Fuente J, Atkinson MW, Naranjo V, Fernández de Mera IG, Mangold AJ, Keating KA, Kocan KM (2007) Sequence analysis of the msp4 gene of Anaplasma ovis strains. Vet Microbiol 119:375–381

    PubMed  Article  Google Scholar 

  • Duscher GG, Leschnik M, Fuehrer HP, Joachim A (2015) Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria. Int J Parasitol Parasites Wildl 4:88–96

    PubMed  Article  Google Scholar 

  • Filippova NA (1977) Ixodid ticks of the subfamily Ixodinae, Fauna of the USSR: Arachnoides. New Ser 4(4). Nauka, Leningrad (in Russian)

  • Filippova NA (1997) Fauna of Russia and neighboring countries, Arachnoidea, vol IV, Issue 5, Ixodid Ticks of Subfamily Amblyomminae. Nauka Publishing House, St. Petersburg (in Russian)

  • Földvári G, Široký P, Szekeres S, Majoros G, Sprong H (2016) Dermacentor reticulatus: a vector on the rise. Parasit Vectors 9:314

    PubMed  PubMed Central  Article  Google Scholar 

  • Fournier PE, Roux V, Raoult D (1998) Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol 48(Pt 3):839–849

    CAS  PubMed  Article  Google Scholar 

  • Gortazar C, Diez-Delgado I, Barasona JA et al (2015) The wild side of disease control at the wildlife-livestock-human interface: a review. Front Vet Sci 1:1–12

    Article  Google Scholar 

  • Heidarpour Bami M, Haddadzadeh HR, Kazemi B, Khazraiinia P, Bandehpour M, Aktas M (2009) Molecular identification of ovine Theileria species by a new PCR-RFLP method. Vet Parasitol 161:171–177

    CAS  PubMed  Article  Google Scholar 

  • Hodžić A, Georges I, Postl M, Duscher GG, Jeschke D, Szentiks CA, Ansorge H, Heddergott M (2020) Molecular survey of tick-borne pathogens reveals a high prevalence and low genetic variability of Hepatozoon canis in free-ranging grey wolves (Canis lupus) in Germany. Ticks Tick Borne Dis 11:101389

    PubMed  Article  Google Scholar 

  • Höfle U, Vicente J, Nagore D, Hurtado A, Peña A, de la Fuente J, Gortazar C (2004) The risks of translocating wildlife: pathogenic infection with Theileria sp. and Elaeophora elaphi in an imported red deer. Vet Parasitol 126:387–395

    PubMed  Google Scholar 

  • Hoogstraal H (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15:307–417

    CAS  PubMed  Article  Google Scholar 

  • Inokuma H, Okuda M, Ohno K, Shimoda K, Onishi T (2002) Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet Parasitol 106:265–271

    CAS  PubMed  Article  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    CAS  PubMed  Article  Google Scholar 

  • Keysary A, Eremeeva ME, Leitner M et al (2011) Spotted fever group rickettsiae in ticks collected from wild animals in Israel. Am J Trop Med Hyg 85:919–923

    PubMed  PubMed Central  Article  Google Scholar 

  • Kubo M, Uni S, Agatsuma T, Nagataki M, Panciera RJ, Tsubota T, Nakamura S, Sakai H, Masegi T, Yanai T (2008) Hepatozoon ursi n. sp. (Apicomplexa: Hepatozoidae) in Japanese black bear (Ursus thibetanus japonicus). Parasitol Int 57:287–294

    PubMed  Article  Google Scholar 

  • Li Y, Chen Z, Liu Z, Liu J, Yang J, Li Q, Li Y, Cen S, Guan G, Ren Q, Luo J, Yin H (2014) Molecular identification of Theileria parasites of northwestern Chinese Cervidae. Parasit Vectors 7:225

    PubMed  PubMed Central  Article  Google Scholar 

  • Matjila PT, Leisewitz AL, Oosthuizen MC, Jongejan F, Penzhorn BL (2008) Detection of a Theileria species in dogs in South Africa. Vet Parasitol 157:34–40

    CAS  PubMed  Article  Google Scholar 

  • Oosthuizen MC, Zweygarth E, Collins NE, Troskie M, Penzhorn BL (2008) Identification of a novel Babesia sp. from a sable antelope (Hippotragus niger Harris, 1838). J Clin Microbiol 46:2247–2251

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Orkun Ö, Çakmak A (2019) Molecular identification of tick-borne bacteria in wild animals and their ticks in Central Anatolia, Turkey. Comp Immunol Microbiol Infect Dis 63:58–65

    PubMed  Article  Google Scholar 

  • Orkun Ö, Karaer Z (2017) Molecular characterization of Babesia species in wild animals and their ticks in Turkey. Infect Genet Evol 55:8–13

    CAS  PubMed  Article  Google Scholar 

  • Orkun Ö, Nalbantoğlu S (2018) Hepatozoon canis in Turkish red foxes and their ticks. Vet Parasitol Reg Stud Reports 13:35–37

    PubMed  Google Scholar 

  • Orkun Ö, Koç N, Sürsal N et al (2018) Molecular characterization of tick-borne blood protozoa in stray dogs from central anatolia region of Turkey with a high-rate Hepatozoon infection. Kafkas Univ Vet Fak Derg 24:227–232

    Google Scholar 

  • Orkun Ö, Çakmak A, Nalbantoğlu S, Karaer Z (2020) Turkey tick news: a molecular investigation into the presence of tick-borne pathogens in host-seeking ticks in Anatolia; initial evidence of putative vectors and pathogens, and footsteps of a secretly rising vector tick, Haemaphysalis parva. Ticks Tick Borne Dis 11:101373

    PubMed  Article  Google Scholar 

  • Otranto D, Cantacessi C, Pfeffer M, Dantas-Torres F, Brianti E, Deplazes P, Genchi C, Guberti V, Capelli G (2015) The role of wild canids and felids in spreading parasites to dogs and cats in Europe part I: Protozoa and tick-borne agents. Vet Parasitol 213:12–23

    PubMed  Article  Google Scholar 

  • Pawar RM, Poornachandar A, Arun AS, Manikandan S, Shivaji S (2011) Molecular prevalence and characterization of Hepatozoon ursi infection in Indian sloth bears (Melursus ursinus). Vet Parasitol 182:329–332

    CAS  PubMed  Article  Google Scholar 

  • Perles L, Barranco GHF, Soriano IM, Cruz NRN, Bueno PJ, Santana ÁE, Machado RZ, Werther K, André MR (2019) Hepatozoon sp. gamonts as an accidental finding in synovial liquid from an injured maned wolf (Chrysocyon brachyurus) in southeastern Brazil. Rev Bras Parasitol Vet 28:779–785

    PubMed  Article  Google Scholar 

  • Postic D, Assous MV, Grimont PAD, Baranton G (1994) Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) Intergenic spacer amplicons. Int J Syst Bacteriol 44:743–752

    CAS  PubMed  Article  Google Scholar 

  • Randolph SE (2014) Ecology of non-nidicolous ticks. In: Sonenshine D.E. RRM (ed) Biology of ticks, second. Oxford University Press, Oxford, pp 3–38

  • Roux V, Rydkina E, Eremeeva M, Raoult D (1997) Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Bacteriol 47:252–261

    CAS  PubMed  Article  Google Scholar 

  • Sen E, Uchishima Y, Okamoto Y, Fukui T, Kadosaka T, Ohashi N, Masuzawa T (2011) Molecular detection of Anaplasma phagocytophilum and Borrelia burgdorferi in Ixodes ricinus ticks from Istanbul metropolitan area and rural Trakya (Thrace) region of north-western Turkey. Ticks Tick Borne Dis 2:94–98

    PubMed  Article  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Široký P, Mikulíček P, Jandzík D, Kami H, Mihalca AD, Rouag R, Kamler M, Schneider C, Záruba M, Modrý D (2009) Co-distribution pattern of a Haemogregarine Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium (Metastigmata: Ixodidae). J Parasitol 95:728–733

    PubMed  Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tomassone L, Berriatua E, De Sousa R et al (2018) Neglected vector-borne zoonoses in Europe: into the wild. Vet Parasitol 251:17–26

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the General directorate of Nature conservation and National Parks of Turkey for their valuable collaboration in obtaining tick samples from wild animals and thank Drs. İrem Ergin and Oytun Şenel for their valuable help in obtaining of tick samples from a fox and hare in the Unit for Wild Animals at Ankara University. Two wolves that ticks were collected in this study were the monitored animals as part of a project (project no. 2015K100090) entitled “Arrangement and Monitoring of Wildlife Road Crossing” and conducted by the General directorate of Nature conservation and National Parks, and this project was funded by the Ministry of Development. The authors would like to thank Ali Onur Sayar for his valuable help in obtaining of tick samples from two wolves. The preliminary results of this study were presented as an oral presentation at the 21st Congress of Parasitology, September 28–October 03, 2019, İzmir, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Orkun.

Ethics declarations

Ethical statement

All applicable international, national, and/or institutional guidelines for care and use of wild animals were followed. Two gray wolves that ticks were collected in this study are subject as part of the national wild animals monitoring program conducted by the General Directorate of Nature Conservation and National Parks of Turkey with the approval number 2014/6841. Additionally, a tortoise investigated in this study was found to be infested by ticks during a field study and this tortoise was then released into the same place at the same time just after removed their ticks. Only tick samples were collected from live animals and no other medical intervention (such as blood or tissue collections) was undertaken on these animals for this study.

Conflict of interest

The authors declare that they have no conflict and interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Neil Bruce Chilton

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orkun, Ö., Emir, H. Identification of tick-borne pathogens in ticks collected from wild animals in Turkey. Parasitol Res 119, 3083–3091 (2020). https://doi.org/10.1007/s00436-020-06812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06812-2

Keywords

  • Theileria capreoli
  • Candidatus Rickettsia barbariae
  • Hepatozoon ursi
  • Non-nidicolous ixodid ticks
  • Dermacentor reticulatus
  • Phylogeny