Skip to main content

Advertisement

Log in

Inhibitory effects of novel ciprofloxacin derivatives on the growth of four Babesia species and Theileria equi

  • Treatment and Prophylaxis - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The problems of parasite resistance, as well as the toxic residues to most of the commercially available antipiroplasmic drugs severely weaken their effective, curative, and environmental safe employment. Therefore, it is clear that the development of treatment options for piroplasmosis is vital for improving disease treatment and control. Ciprofloxacin is a broad-spectrum antibiotic that targets mainly the DNA replication machinery by inhibiting DNA gyrase and topoisomerase enzymes. As a result, ciprofloxacin is used for treating several bacterial and parasitic infections. In this study, the efficacy of 15 novel ciprofloxacin derivatives (NCD) that had been developed against drug-resistant Mycobacterium tuberculosis was evaluated against piroplasm parasite multiplication in vitro. The half-maximal inhibitory concentration (IC50) values of the most effective five compounds of NCD (No. 3, 5, 10, 14, 15) on Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi were 32.9, 13.7, 14.9, and 30.9; 14.9, 25.8, 13.6, and 27.5; 34.9, 33.9, 21.1, and 22.3; 26.7, 28.3, 34.5, and 29.1; and 4.7, 26.6, 33.9, and 29.1 μM, respectively. Possible detrimental effects of tested NCD on host cells were assessed using mouse embryonic fibroblast (NIH/3T3) and Madin-Darby bovine kidney (MDBK) cell lines. Tested NCD did not suppress NIH/3T3 and MDBK cell viability, even at the highest concentration used (500 μM). Combination treatments of the identified most effective compounds of NCD/diminazene aceturate (DA), /atovaquone (AQ), and /clofazimine (CF) showed mainly synergistic and additive effects. The IC50 values of NCD showed that they are promising future candidates against piroplasmosis. Further in vivo trials are required to evaluate the therapeutic potential of NCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AbouLaila M, Munkhjargal T, Sivakumar T, Ueno A, Nakano Y, Yokoyama M, Yoshinari T, Nagano D, Katayama K, El-Bahy N, Yokoyama N, Igarashi I (2012) Apicoplast-targeting antibacterials inhibit the growth of Babesia parasites. Antimicrob Agents Chemother 56(6):3196–3206

  • Adeyemi OS, Awakan OJ, Atolani O, Iyeye CO, Oweibo OO, Adejumo OJ, Ibrahim A, Batiha GE (2019a) New ferulic acid derivatives protect against carbon tetrachloride-induced liver injury in rats. Open Biochem Jl 28:13(1)

    Google Scholar 

  • Adeyemi OS, Atolani O, Awakan OJ, Olaolu TD, Nwonuma CO, Alejolowo O, Otohinoyi DA, Rotimi D, Owolabi A, Batiha GE (2019b) Focus: organelles: In vitro screening to identify anti-Toxoplasma compounds and in silico modeling for bioactivities and toxicity. Yale J Biol Med 92(3):369–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayogu E, Ugwuowo O, Amorha KC, Okonta JM (2016) Evaluation of ciprofloxacin effect on the antimalarial activity of some antimalarial drugs in Plasmodium berghi infected mice. Int J Pharm Sci Res 7:1896–1903

    CAS  Google Scholar 

  • Baldissera MD, Grando TH, Souza CF, Cossetin LF, Sagrillo MR, Nascimento K, da Silva APT, Dalla Lana DF, Da Silva AS, Stefani LM, Monteiro SG (2016) Nerolidol nanospheres increases its trypanocidal efficacy against Trypanosoma evansi: new approach against diminazene aceturate resistance and toxicity. Exp Parasitol 166:144–149

  • Batiha GE-S, Beshbishy AM, Tayebwa DS, Shaheen H, Yokoyama N, Igarashi I (2018) Inhibitory effects of Uncaria tomentosa bark, Myrtus communis roots, Origanum vulgare leaves and Cuminum cyminum seeds extracts against the growth of Babesia and Theileria in vitro. Jap J Vet Parasitol 17:1–13

    Google Scholar 

  • Batiha GE, El-Far AH, El-Mleeh AA, Alsenosy AA, Abdelsamei EK, Abdel-Daim MM, El-Sayed YS, Shaheen HM (2019a) In vitro study of ivermectin efficiency against the cattle tick, Rhipicephalus (Boophilus) annulatus, among cattle herds in El-Beheira, Egypt. Vet World 12(8):1319–1326

    PubMed  PubMed Central  Google Scholar 

  • Batiha GE-S, Beshbishy AM, Tayebwa DS, Adeyemi OS, Shaheen H, Yokoyama N, Igarashi I (2019b) The effects of trans-chalcone and chalcone 4 hydrate on the growth of Babesia and Theileria. PLoS Negl Trop Dis 13:e0007030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batiha GE-S, Beshbishy AM, Tayebwa DS, Adeyemi OS, Yokoyama N, Igarashi I (2019c) Evaluation of the inhibitory effect of ivermectin on the growth of Babesia and Theileria parasites in vitro and in vivo. Trop Med Health 47:42

    PubMed  PubMed Central  Google Scholar 

  • Batiha GE-S, Beshbishy AM, Tayebwa DS, Shaheen MH, Yokoyama N, Igarashi I (2019d) Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick Borne Dis 10:949–958

    PubMed  Google Scholar 

  • Batiha GE-S, Beshbishy AM, Tayebwa DS, Adeyemi OS, Yokoyama N, Igarashi I (2019e) Anti-piroplasmic potential of the methanolic Peganum harmala seeds and ethanolic Artemisia absinthium leaf extracts. J Protozool Res 29:8–25

    Google Scholar 

  • Batiha GE-S, Beshbishy AM, Guswanto A, Nugraha AB, Munkhjargal T, Abdel-Daim MM, Mosqueda J, Igarashi I (2020a) Phytochemical characterization and chemotherapeutic potential of Cinnamomum verum extracts on the multiplication of protozoan parasites in vitro and in vivo. Molecules 25(4):996

    PubMed Central  Google Scholar 

  • Batiha GE-S, Beshbishy AM, Adeyemi OS, Nadwa E, Rashwan E, Yokoyama N, Igarashi I (2020b) Safety and efficacy of hydroxyurea and eflornithine against most blood parasites Babesia and Theileria. PLoS One 15(2):e0228996

    Google Scholar 

  • Batiha G-S, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK (2020c) Syzygium aromaticum L. (Myrtaceae): traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 10:202

    Google Scholar 

  • Batiha GE-S, Beshbishy AM, Alkazmi LM, Adeyemi OS, Nadwa EH, Rashwan EM, El-Mleeh A, Igarashi I (2020d) Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complement Altern Med 20:87

  • Batiha GE-S, Beshbishy AM, Adeyemi OS, Nadwa EH, Rashwan EM, Alkazmi LM, Elkelish AA, Igarashi I (2020e) Phytochemical screening and antiprotozoal effects of the methanolic Berberis vulgaris and acetonic Rhus coriaria extracts. Molecules 25:550

    CAS  Google Scholar 

  • Bergan T, Delin C, Johansen S, Kolstad IM, Nord CE, Thorsteinsson SB (1986) Pharmacokinetics of ciprofloxacin and effect of repeated dosage on salivary and fecal microflora. Antimicrob Agents Chemother 29(2):298–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beshbishy AM, Batiha GE-S, Yokoyama N, Igarashi I (2019a) Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo. Parasit Vectors 12:269

    PubMed  PubMed Central  Google Scholar 

  • Beshbishy AM, Batiha GE-S, Adeyemi OS, Yokoyama N, Igarashi I (2019b) Inhibitory effects of methanolic Olea europaea and acetonic Acacia laeta on growth of Babesia and Theileria. Asia Pac J Trop Med 12:425–434

    Google Scholar 

  • Beshbishy AM, Batiha GE-S, Alkazmi L, Nadwa E, Rashwan E, Abdeen A, Yokoyama N, Igarashi I (2020) Therapeutic effects of atranorin towards the proliferation of Babesia and Theileria parasites. Pathogen 9(2):E127

    Google Scholar 

  • Bock R, Jackson L, De Vos A, Jorgensen W (2004) Babesiosis of cattle. Parasitology 129(S1):S247–S269

  • Boeckh M, Grineisen S, Shokry F, Borner K, Koeppe P, Krasemann C, Wagner J, Lode H (1989) Study of ciprofloxacin in combination with metronidazole or clindamycin. Rev Infect Dis 11:S1038–S1039

    Google Scholar 

  • Castro W, Navarro M, Biot C (2013) Medicinal potential of ciprofloxacin and its derivatives. Future Med Chem 5:81–96

    CAS  PubMed  Google Scholar 

  • Chou T-C (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681

  • Chow AW, Wong J, Bartlett KH (1988) Synergistic interactions of ciprofloxacin and extended-spectrum beta-lactams or aminoglycosides against multiply drug-resistant Pseudomonas maltophilia. Antimicrob Agents Chemother 32:782–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cilliers P, Seldon R, Smit FJ, Aucamp J, Audrey Jordaan A, Warner DF, N’Da DD (2019) Design, synthesis, and antimycobacterial activity of novel ciprofloxacin derivatives. Chem Biol Drug Des 94:1518–1536

    CAS  PubMed  Google Scholar 

  • De Clercq E (2007) 7.10 - Viruses and viral diseases. Comprehen Med Chem II 7:253–293

    Google Scholar 

  • Dubar F, Anquetin G, Pradines B, Dive D, Khalife J, Biot C (2009) Enhancement of the antimalarial activity of ciprofloxacin using a double prodrug/bioorganometallic approach. J Med Chem 52:7954–7957

    CAS  PubMed  Google Scholar 

  • Dubar F, Wintjens R, Martins-Duarte ÉS, Vommaro RC, de Souza W, Dive D, Pierrot C, Pradines B, Wohlkonig A, Khalife J, Biot C (2011) Ester prodrugs of ciprofloxacin as DNA-gyrase inhibitors: synthesis, antiparasitic evaluation, and docking studies. Med Chem Commun 2:430–435

    CAS  Google Scholar 

  • Ejikeme C, Peace MU, Chinaza O (2014) Effect of combined quinine and ciprofloxacin therapy in experimental murine plasmodiasis. Int J Trop Dis Health 4:344–351

    Google Scholar 

  • Falajiki YF, Akinola O, Abiodun OO, Happi CT, Sowunmi A, Gbotosho GO (2015) Amodiaquine–ciprofloxacin: a potential combination therapy against drug resistant malaria. Parasitol 142:849–854

    CAS  Google Scholar 

  • Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409

    CAS  PubMed  Google Scholar 

  • Fleige T, Soldati-Favre D (2008) Targeting the transcriptional and translational machinery of the endosymbiotic organelle in apicomplexans. Curr Drug Targets 9:948–956

    CAS  PubMed  Google Scholar 

  • Gai X-Y, Bo S-N, Shen N, Zhou QT, Yin AY, Lu W (2019) Pharmacokinetic-pharmacodynamic analysis of ciprofloxacin in elderly Chinese patients with lower respiratory tract infections caused by Gram-negative bacteria. Chin Med J 132:638–646

    PubMed  PubMed Central  Google Scholar 

  • Giguère S, Prescott JF, Dowling PM (2013) Antimicrobial therapy in veterinary medicine, 5th edn. John Wiley & Sons, pp 1–704. https://doi.org/10.1002/9781118675014

  • Haigh A, Hagan D (1974) Evaluation of imidocarb dihydrochloride against Redwater disease in cattle in Eire. Vet Rec 94:56–59

    CAS  PubMed  Google Scholar 

  • Hamzah J, Skinner-Adams T, Davis T (2000) In vitro antimalarial activity of trovafloxacin, a fourth-generation fluoroquinolone. Acta Trop 74:39–42

    CAS  PubMed  Google Scholar 

  • He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS (2001) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20:330–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffner S, Kratz M, Olsson-Liljequist B, Svenson SB, Källenius G (1989) In-vitro synergistic activity between ethambutol and fluorinated quinolones against Mycobacterium avium complex. J Antimicrob Chemother 24:317–324

    CAS  PubMed  Google Scholar 

  • Igarashi I, Njonge FK, Kaneko Y, Nakamura Y (1998) Babesia bigemina: in vitro and in vivo effects of curdlan sulfate on growth of parasites. Exp Parasitol 90(3):290–293

  • Kaatz G, Seo S, Barriere SL, Albrecht LM, Rybak MJ (1989) Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 33:1184–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AA, Slifer TR, Araujo FG, Remington JS (2001) Activity of gatifloxacin alone or in combination with pyrimethamine or gamma interferon against Toxoplasma gondii. Antimicrob Agents Chemother 45:48–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Wofford-McQueen R, Gordon RC (1989) Ciprofloxacin, imipenem and rifampicin: in-vitro synergy of two and three-drug combinations against Pseudomonas cepacia. J Antimicrob Chemother 23:831–835

    CAS  PubMed  Google Scholar 

  • Kuriakose S, Muleme HM, Onyilagha C, Singh R, Jia P, Uzonna JE (2012) Diminazene aceturate (Berenil) modulates the host cellular and inflammatory responses to Trypanosoma congolense infection. PLoS One 7:e48696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond Ser B Biol Sci 365:749–763

    CAS  Google Scholar 

  • Mahmoudi N, Ciceron L, Franetich J-F, Farhati K, Silvie O, Eling W, Sauerwein R, Danis M, Mazier D, Derouin F (2003) In vitro activities of 25 quinolones and fluoroquinolones against liver and blood-stage Plasmodium spp. Antimicrob Agents Chemother 47:2636–2639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins-Duarte ES, Dubar F, Lawton P, da Silva CF, Soeiro Mde N, de Souza W, Biot C, Vommaro RC (2015) Ciprofloxacin derivatives affect parasite cell division and increase the survival of mice infected with Toxoplasma gondii. PLoS One 10:e0125705

    PubMed  PubMed Central  Google Scholar 

  • Moody J, Gerding D, Peterson L (1987) Evaluation of ciprofloxacin’s synergism with other agents by multiple in vitro methods. Amer J Med 82:44–54

    CAS  PubMed  Google Scholar 

  • Neu HC (1991) Synergy and antagonism of combinations with quinolones. Eur J Clin Microbiol Infect Dis 10:255–261

    CAS  PubMed  Google Scholar 

  • Onyiche TE, Suganuma K, Igarashi I, Yokoyama N, Xuan X, Thekisoe O (2019) A review on equine piroplasmosis: epidemiology, vector ecology, risk factors, host immunity, diagnosis and control. Int J Environ Res Pub Health 16(10):1736

  • Perronne C, Malinverni R, Glauser M (1987) Treatment of Staphylococcus aureus endocarditis in rats with coumermycin A1 and ciprofloxacin, alone or in combination. Antimicrob Agents Chemother 31:539–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reder BL, Gutschik E (1989) In-vitro activity of ciprofloxacin combined with either fusidic acid or rifampicin against Staphylococcus aureus. J Antimicrob Chemother 23:347–352

    Google Scholar 

  • Rizk MA, AbouLaila M, El-Sayed SAE, Guswanto A, Yokoyama N, Igarashi I (2018) Inhibitory effects of fluoroquinolone antibiotics on Babesia divergens and Babesia microti, blood parasites of veterinary and zoonotic importance. Infect Drug Resist 11:1605–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sajjadi SE, Ghanadian M, Haghighi M (2017) Isolation and identification of two phenolic compounds from a moderately cytotoxic fraction of Cousinia verbascifolia Bunge. Adv Biomed Res 6:66

    PubMed  PubMed Central  Google Scholar 

  • Sharma D, Patel RP, Zaidi STR, Sarker MMR, Lean QY, Ming LC (2017) Interplay of the quality of ciprofloxacin and antibiotic resistance in developing countries. Front Pharmacol 8:546

    PubMed  PubMed Central  Google Scholar 

  • Tayebwa DS, Vudriko P, Tuvshintulga B, Guswanto A, Nugraha AB, Gantuya S, Batiha GE, Musinguzi SP, Komugisha M, Bbira JS, Okwee-Acai J, Tweyongyere R, Wampande EM, Byaruhanga J, Adjou Moumouni PF, Sivakumar T, Yokoyama N, Igarashi I (2018) Molecular epidemiology of Babesia species, Theileria parva, and Anaplasma marginale infecting cattle and the tick control malpractices in Central and Eastern Uganda. Ticks Tick Borne Dis 9:1475–1483

    PubMed  Google Scholar 

  • Ubulom PME, Udobi CE, Madu MI (2015) Amodiaquine and ciprofloxacin combination in Plasmodiasis therapy. J Trop Med 2015:1–4

    Google Scholar 

  • Watt G, Shanks GD, Edstein MD, Pavanand K, Webster HK, Wechgritaya S (1991) Ciprofloxacin treatment of drug-resistant falciparum malaria. J Infect Dis 164:602–604

    CAS  PubMed  Google Scholar 

  • Wise LN, Pelzel-McCluskey AM, Mealey RH, Knowles DP (2014) Equine piroplasmosis. Vet Clin N Am-Equine 30(3):677–693

  • Yusuf JJ, Jimma P, Ethiopia T (2017) Review on bovine babesiosis and its economical importance. J Vet Med Res 4:1090

    Google Scholar 

  • Zhang G-F, Liu X, Zhang S, Pan B, Liu M-L (2018) Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 146:599–612

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Oriel M.M. Thekisoe.

Funding

This study was supported by the Ministry of Higher Education Egypt, the Japanese Society for the Promotion of Science, and the Ministry of Education, Culture, Sports, Science and Technology, Japan (JSPS) (KAKEN Grant Number 18H02337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Igarashi.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

All experiments were carried out in conformity with the local guidelines for animal experiments, as approved by the Obihiro University of Agriculture and Veterinary Medicine, Japan (accession number of the animal experiment 28-111-2/28-110). This ethical approval was developed through the basic guidelines for the proper conduct of animal experimentation and related activities in Academic Research Institutions, Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

Additional information

Section Editor: Leonhard Schnittger

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batiha, G.ES., Tayebwa, D.S., Beshbishy, A.M. et al. Inhibitory effects of novel ciprofloxacin derivatives on the growth of four Babesia species and Theileria equi. Parasitol Res 119, 3061–3073 (2020). https://doi.org/10.1007/s00436-020-06796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06796-z

Keywords

Navigation